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General introduction

Many human diseases have a genetic component. Monogenic disorders are the
result of a single defective gene. They can be inherited or caused by a spon-
taneous mutation with no previous family history. Those pathologies are how-
ever rare compared with multifactorial diseases for which the effects of multiple
genes are coupled with lifestyle and environmental factors. For those disorders,
known as complex diseases, it is particularly challenging to establish the right
etiology because it is difficult to determinate the real impact of both genetic
and environmental factors. A first issue is that the influence of genetic versus
environmental factors may strongly fluctuate according to the studied disease.
For example, among autoimmune and chronic inflammatory disorders, psori-
asis is under strong genetic influences while multiple sclerosis presents weak
genetic but strong environmental pressure [Fiocchi, 2009]. Another issue is that
the degree of contribution of any given gene can be extremely variable and can
also depend on the presence of some specific other genes. In addition, those
genes or gene combinations will not only determine the simple apparition of
a particular disease but also the degree of its severity, its duration and its
response to possible therapies.

The exploration of both genetic and environmental influences is the subject
of numerous research and investigations. In the early 2000s, development and
costs reduction of genotyping technologies have made possible the emergence
of new types of genetic investigations based on the whole genome as Genome
Wide Association Studies (GWAS). The main objective of GWAS is to iden-
tify relevant genes that are related to a particular phenotypic condition by the
detection of genetic markers (SNPs) among the whole genome. If GWAS have
shown success to identify a large number of associated markers for a plurality
of diseases, they have however only been able to explain a small part of the phe-
notypic variations expected to result from genetic influences. This difference
is known as the missing heritability. Limitations of GWAS may be explained
by the various challenges that arise from the analysis of high dimensional data
sets like the difficulty to take into account the global genetic architecture of
the phenotypic trait considered. Indeed, GWAS are traditionally based on a
univariate approach in which each genetic marker is individually tested for a
possible association. If this type of analyses is computationally sustainable for
a whole genome investigation, it fails to consider the possible links between

1



2 General introduction

genetic markers and thus fails to correctly model the global genetic architec-
ture. Interaction effects between genetic markers, known as epistasis, are thus
suspected to play a relevant role in the regulation of phenotypic conditions and
may explain a part of the missing heritability induced by GWAS [Zuk et al.,
2012]. However, investigation of epistatic effects in GWAS is particularly chal-
lenging due not only to methodological and computational difficulties but also
to the fact that the definition of epistasis may refer to diverse biological and
statistical concepts. Inquiry of epistasis is currently a large field of investiga-
tion that requires the development of new modeling approaches able to take
into account and identify those type of effects.

The main objective of this work is to propose a new statistical approach ded-
icated to the detection of epistasis in GWAS. More precisely we will focus on
gene based epistasis which consists in considering interactions between groups
of markers belonging to the same genes rather than between genetic markers
themselves.

This manuscript is composed of five different sections. The first section will
present some genetic notions and will introduce Genome Wide Association
Studies with their limits and their remaining challenges. In a second section,
we will present the statistical methodologies used throughout the manuscript
as well as interaction detection approaches that have been proposed in the
literature in the past years. Our new methodological approach will be present in
a third section. The fourth section will present the results of various simulation
studies aiming to evaluate the performance of our proposed approach. We will
finish with a fifth section that will focus on the application of our approach
to detect gene gene interactions in real data sets regarding several different
pathologies.



Chapter 1
Genetic context of Genome Wide Asso-
ciation Studies

This first chapter aims to introduce the basic notions of genetics that will be
used in this manuscript and the principles and limitations of Genome Wide
Association Studies.

Contents
1.1 Genetic concepts . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Genome: definition and role . . . . . . . . . . . . . . 4
1.1.2 Genetic diversity and variation . . . . . . . . . . . . 6
1.1.3 Structure in the genome . . . . . . . . . . . . . . . . 9

1.2 Genome Wide Association Studies . . . . . . . . . 15
1.2.1 Linkage analyses and association studies . . . . . . . 15
1.2.2 Sample selection in GWAS . . . . . . . . . . . . . . 17
1.2.3 Markers collection . . . . . . . . . . . . . . . . . . . 18
1.2.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5 Heritability . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 GWAS limitations and recommendations . . . . . 27
1.3.1 Limits of GWAS . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Solutions and recommendations . . . . . . . . . . . . 30
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4 Chapter 1. Genetic context of Genome Wide Association Studies

1.1 Genetic concepts

1.1.1 Genome: definition and role
What is the genome?

The genome is the complete set of genetic instructions of an organism. Each
individual possesses a unique genome allowing to define his singularity among
human beings. The set of genetic instructions that define the genome is stored
as a code in the DNA which is present in all the cells of the organism. There
are many different types of cells such as nerve cells or hair cells, with different
shapes and forms but they all have the same basic parts: a membrane that
defines the outer border of the cell and a cytoplasm which is a liquid material
inside the cell that contains the nucleus. Genetic information is stored inside
the nucleus in the form of chromosomes (cf Figure 1.1).

Figure 1.1: From the cell to the DNA from https://cancergenome.nih.gov

In humans, each cell normally contains 23 pairs of chromosomes (cf Figure 1.2).
22 of the pairs consist of non identical copies of the same chromosome, each
copy presents different variants inherited from the parents and recombined
during the meiosis. The two non identical chromosomes that form a pair are
referred to as homologous chromosomes [Laird and Lange, 2011]. The 23rd pair
contains the sex chromosomes.

The chromosomes are really long strings of DNA (deoxyribonucleic acid). DNA
is made of two complementary strands. It is shaped like a ladder that has been
twisted, this shape is called the double helix. The steps of the ladder are made
of four distinct bases: Adenine (A), thymine (T), guanine (G) and cytosine
(C). Each step of the ladder is a base pair of these four bases. As adenine

https://cancergenome.nih.gov/common/popUps/popDefinition.aspx?id=CDR0000045671&version=Patient&language=English
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Figure 1.2: Representation of the human genome from National Human
Genome Research Institute

(A) can only form a base pair with thymine (T) and guanine (G) can only
form a base pair with cytosine (C), only two base pairs are possible. In this
way, if we know the sequence of bases of one strand of DNA we will also know
the sequence of bases on the other strand. The order of bases is referred to
as the sequence. An example of a short sequence of a single strand of DNA
is: ATTGCTCAT. It is not possible to give the exact number of base pairs
contained in the whole human genome because of genetic variation between
individuals, but it is known that it measures more than three billion base pairs
[Richards and Hawley, 2010].

We call a locus a precise position on the genome and an allele a possible version
for a given locus. More generally, an allele represents a possible version for any
type of genetic variant (that could also be a gene or a haplotype for example).
However, in the following, we will mainly use allele to define a version of a
particular locus as in the context of this work we will mainly focus on locus
variants and more particularly on SNPs (this type of variants will be presented
in more details in Section 1.2.3). A locus is said to be monomorphic when all
the individuals present the same allele and polymorphic when different alle-
les can be observed in the population at this specific locus. As every human
being received two homologous copies of each chromosome from his parents,
he will carry two alleles at each given locus. Each pair of alleles represents
the genotype for a specific locus. For example, if we consider a locus with two
possible alleles A/a, three possible genotypes can be observed: AA, Aa or aa.
If both alleles are identical (genotype AA or aa) we will say that the individ-
ual is homozygous at the locus and heterozygous otherwise (genotype Aa). As
genotype is the information contained within two alleles its definition will also



6 Chapter 1. Genetic context of Genome Wide Association Studies

depend on the type of variants studied (locus, genes, haplotype...). A particular
genotype at a specific genetic variant may contribute to the phenotype of an
individual. The phenotype represents the observable physical characteristics
of a subject as his appearance, development or behavior. In addition to the
role of the genotype, the phenotype can also result from environmental factors
or from the interactions between genes, environmental factors or a mixture
of both. The genetic difference between two individuals can be obtained when
comparing their genotypes and the importance of genetic characteristics in the
manifestation of a specific phenotypic trait can be assessed when comparing
the genotype of multiple individuals.

DNA to proteins

The role of DNA is the long-term storage of genetic information. Fundamen-
tally, this genetic information is structured into genes that contain the in-
structions to construct proteins. Proteins are large, complex molecules that
play many critical roles in the body. They do most of the work in cells and
are required for the structure, function, and regulation of the body’s tissues
and organs. Genes are stretches of DNA that vary widely in size, some being
as small as a few thousand base pairs, and some containing millions of base
pairs [Laird and Lange, 2011]. The DNA sequence of the gene determine the
size and the shape of the proteins it builds and thus, the diversities of their
function in the organism.

When proteins are needed, the corresponding genes are transcribed into RNA,
this process is known as transcription. The RNA is first processed so that non-
coding parts are removed and is then transported out of the nucleus. Outside
the nucleus, the proteins are built based upon the code in the RNA, this is the
translation step.

1.1.2 Genetic diversity and variation
Genetic diversity could be defined as the variations within and among species.
For human being, it is noted that two individuals share at least 99.5% of their
genome [Levy et al., 2007]. Genetic diversity lies in the remaining 0.5 percent.
This part allows to define the singularity of each individual in a population
but also contains traces explaining the genetic diversity between population.
Indeed, if each individual has a unique genetic code we can observe similarities
between individuals that come from the same population and strong variation
between population. As an example, we can consider the frequency of lactose
intolerance, which is high in nearly all but those of European origin. However,
before spreading in a given population a new trait is the result of a mutation
or a genetic recombination. It will become a characteristic trait of the popula-
tion if it presents a significant advantage face to the environmental demands.
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Figure 1.3: The mitotic and meiotic cell cycles from O’Connor [2008]. (a)
Production of identical daughter cells in mitosis. (b) Formation of nonidentical
gametes during meiosis.

Thus, genetic variation is the base of genetic diversity for all organisms and
contributes eventually to biodiversity on a larger scale through species diver-
sity. Genetic variation is a measure of the genetic differences that exist within
a population as the differences in DNA sequences or genes between individu-
als. Genetic variation can occur because of mutations or genetic recombination
while genetic diversity becomes important according to environmental aspects.

Mutations and genetic recombination are two events that happen during cells
division. Cells divide in two ways: mitosis and meiosis as presented in Fig-
ure 1.3. Mitosis is a process where a single cell divides into two genetically
identical daughter cells. In meiosis, on the other hand, a single cell divides
twice in order to give rise to four cells containing half the number of chromo-
somes of the original cell. These new cells are our sex cells also called gametes:
sperm in males, eggs in females.

Recombination

In meiosis, the pairs of chromosomes exchange DNA fragments in a process
called recombination or crossing over. By the exchange of DNA sequences,
genetic recombination allows producing novel sets of genetic information and
thus guarantees the genetic variability between individuals. Each gamete will
include both maternally and paternally genetic information. The resulting off-
spring will thus acquire a maximum of genetic variation by inheriting genes
from all four of its grandparents [Clancy, 2008]. If we look at two specific loci,
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Figure 1.4: Possible modification of a DNA sequence from Deonier et al.
[2005]

the probability of their recombination is proportional to their distance on the
sequence. If they are located close to each other, they are likely to be inherited
together. This phenomenon is called genetic linkage.

Mutations

Mutations are random nucleotide alterations that occur during DNA replica-
tion, which is the process of duplication of the DNA in cell division. During
its replication, it is frequent that DNA undergoes chemical changes at some
particular points. If most of these changes are repaired some are preserved
and result in modifications in the DNA sequence. These variations are known
as mutations. Mutations can occur during meiosis and thus be inherited from
parents or acquired over the life of an individual during cell division, the latter
being at the root of human diseases like cancer [Karki et al., 2015]. Variations
in DNA sequence between individuals can take various form as displayed in
Figure 1.4. For example, one or more contiguous bases in a DNA sequence may
be removed (deletion), introduced (insertion), repeated in different locations
(duplication) or reversed (inversion) [Deonier et al., 2005]. We can also observe
point mutation, in that case, the base usually found at a particular position in
the DNA is replaced by another one. Single nucleotide polymorphisms (SNP)
are a type of genetic variant that emanates from point mutations (SNPs will
be presented in more details in Section 1.2.3).

According to where it occurs in the genome, a genetic variation may be at
the origin of genetic disorders or disease. For example, a variation in the cod-
ing sequence of a gene can lead to the alteration in the construction of the
corresponding protein and then to a possible malfunction. Conversely, genetic
variations may also lead to genetic improvements and have positive impacts
for the individual, or they may just as well have no observable repercussion.
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1.1.3 Structure in the genome

Linkage disequilibrium

As previously stated, loci that tend to be inherited together within a family
are said to be genetically linked. Sets of genetically linked alleles at different
loci are sometimes so close that they are rarely separated by recombination
phenomenon and may persist over generations. These types of alleles com-
binations carried on a single chromosome are called haplotypes. Population
structures can be characterized by the frequencies of various haplotypes. These
frequencies can be used to reconstruct the evolutionary history of a population
[Deonier et al., 2005].

Linkage disequilibrium refers to the non random association of alleles in hap-
lotypes. Alleles of different loci are said to be in linkage disequilibrium if they
occur together in a population at a higher rate than we would expect by chance
and are characterized by an unusual correlation. The existence of linkage dise-
quilibrium is influenced by the mechanisms previously described responsible for
genetic variation as genetic recombination. Over time and with the succession
of recombination events in a population, the stretches of founder chromosomes
from the initial generation will break and will be reduced. Thus, a pair of
markers will not present linkage anymore as recombination event would even-
tually have occurred between those points. They will then said to be in linkage
equilibrium. Figure 1.5 presents these notions.

Linkage disequilibrium can be quantified by various common measures based
on the coefficient of linkage disequilibrium D. If we consider two independent
loci with respective alleles a/A and b/B with pa, pA, pb and pB the frequencies of
the different alleles and pAB, pAb, paB, pab the frequencies of the corresponding
haplotypes, the coefficient of linkage disequilibrium is defined as:

D = pAB − pApB = pab − papb (1.1)

D simply corresponds to the difference between observed and expected haplo-
type frequencies. It takes values between [−1, 1] with D = 0 indicating linkage
equilibrium. This measure is however highly dependent on allele frequencies at
the considered loci what makes it difficult to compare the level of LD among
different pairs of loci. Two other measures less sensitive to extreme allele fre-
quencies have then been proposed as:

• r2 = D2

pApBpapb
,

• D′ = D/Dmin with Dmin =





max{−pApB, −papb} when D < 0
min{pApb, papB} when D > 0

.
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Figure 1.5: Linkage and linkage disequilibrium from Bush and Moore
[2012] On the left is an example of linkage: two markers are said in link-
age within a family when they are not broken apart by recombination events
(shown as red lines). On the right is presented an example of moving from
linkage disequilibrium to linkage equilibrium in a population over generation.

These two measures are the most commonly used to describe linkage disequi-
librium. They range from 0 to 1. D′ = 1 corresponds to complete LD. In this
case, there are at most 3 of the 4 possible haplotypes present in the population.
r2 = 1 correspond to perfect LD. Perfect LD occurs when there are exactly 2
of the 4 possible haplotypes present in the population. Both situations mean
that the two loci have not been separated by recombination. It also means that
they have the same allele frequencies in case of perfect LD. Between these two
measures, the r2 is more commonly used to describe linkage disequilibrium in
practice in association studies. It also has the particularity to be equivalent to
the Pearson correlation coefficient [Mueller, 2004].

Due to recombination, linkage disequilibrium is more important between loci
that are close to each other as they are more likely to be inherited together. In
the genome, the presence of linkage disequilibrium between markers can lead to
the formation of strongly correlated markers blocks. These blocks correspond
to portions of the genome with very high levels of linkage disequilibrium and
maintained by low levels of recombination. An example of block structure is
presented in Figure 1.6.
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Figure 1.6: An example of linkage disequilibrium blocks from Zhao et al.
[2013]. This plot show the LD structure of 39 SNPs, the values in squares are
the pair-wise calculation of r2.

Epistasis

Epistasis is generally defined as the interaction between different genetic mark-
ers. It corresponds to a situation in which the effect of a genetic variant depends
either on the presence or the absence of another genetic variant. However the
term epistasis encompasses different definitions according to disciplines and
much confusion exist in the literature regarding the definition and interpreta-
tion of epistasis [Wang et al., 2011a]. In a review, Cordell [2002] point out the
differences between a number of commonly used definitions of epistasis and
present the limitations in moving from statistical estimates of epistatic effects
to understanding genetic causation. Two main distinctions can be made in the
definition of epistasis, they correspond to the concepts that are used in the
disciplines of classical molecular genetics and quantitative genetics. In the first
case, we will refer to biological epistasis and in the second to statistical epis-
tasis.

Biological epistasis was first introduced by Bateson [1909] to describe the mask-
ing effect of a particular genetic variant over a second one. The expression of
the effect of the second variant located at another locus is thus prevented by the
presence of the first genetic variant. Table 1.1 gives an example of an epistatic
effect under the definition of Bateson. Three different hair colors (white, grey,
black) can be obtained according to the genotypes of a subject at two specific
loci A and B. In this example, locus B is epistatic to locus A in the sense that
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locus A
locus B bb bB BB

aa White Grey Grey
aA Black Grey Grey
AA Black Grey Grey

Table 1.1: Example of Bateson [1909] definition of epistasis from Cordell [2002].

locus A
locus B bb bB BB

aa 0 0 0
aA 0 1 1
AA 0 1 1

Table 1.2: Example of a more general definition of epistasis between two loci
from Cordell [2002].

the effect of locus A is observable only if the genotype at locus B is bb.

However, the definition given by Bateson [1909] is limited to a particular pat-
tern of interactions between loci. Cordell [2002] shows the limits of the defini-
tion of biological epistasis, particularly in the case of binary traits. The author
presents the example given in Table 1.2 where we can see that the locus B is
epistatic to locus A but that the locus A is also epistatic to locus B. This form
of epistasis is not considered in the formal definition given by Bateson where
epistasis only corresponds to the masking effect of one factor on another. Nu-
merous epistasis models that do not correspond to the definition from Bateson
can be observed. Examples are given by Neuman and Rice [1992]. More gen-
erally, biological epistasis may be defined as the result of physical interactions
among biomolecules making the effect of a gene dependent on the presence of
one or several other genes at the individual level [Moore and Williams, 2005].

Statistical epistasis refers to the deviation from additive effects of genetic vari-
ants at different loci in a mathematical model. This definition was given by
Fisher [1918] and is closer to the usual concept of statistical interaction. For
example, if we consider the following model:

logit[P (y = 1|x1,x2)] = β0 + β1x1 + β2x2 + β3x1x2,

where x1 and x2 refer to the individual effects of each allele at locus 1 and locus
2 for a binary phenotype y, a statistical interaction may be assessed by testing
whether β3 6= 0. Unlike biological epistasis, statistical epistasis is defined at
the population level and can be interpreted as the interindividual variability
in biological epistasis among individuals [Moore and Williams, 2005]. The dif-
ferences between the two definitions are illustrated in Figure 1.7. Numerous
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Figure 1.7: Relationship between biological and statistical epistasis
from Moore and Williams [2005] Vertical bars refer to DNA sequence
variations, circles, squares and triangles to biomolecules. The dashed lines rep-
resent the physical interactions between biomolecules leading to a particular
phenotype (star). Biological epistasis happens at the individual level whereas
statistical epistasis corresponds to the differences between biological epistasis
in a population.
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analytical approaches have been developed in the field of genetic epidemiol-
ogy to detect epistasis as presented in Section 2.3. They are however based
on the Fisher’s definition and may not succeed in modeling the real genetic
architecture. Aylor and Zeng [2008] propose an extension for estimating and
interpreting epistasis that combines the strengths of classical and statistical
frameworks.

In another review, Phillips [2008] distinguish tree different definition of epis-
tasis. Compositional epistasis and statistical epistasis respectively correspond
to the definition of classical molecular genetics and quantitative genetics pre-
viously describe. The third definition, functional epistasis, corresponds to the
physical molecular interactions between various proteins. This definition refers
to a strictly functional description of interaction without necessarily implicat-
ing a direct genetic link. Functional epistasis is sometimes understood in the
former definition of biological epistasis [Moore and Williams, 2005].

Considering the variety of definitions for the term epistasis, any interpretation
of genetic epistasis should be made with caution. Indeed, statistical interac-
tion does not necessarily imply interaction on a biological level. The difficulties
that exist in inferring biological meaning from statistical models have also been
underlined by Trinh and Rioux [2005] or in the epidemiological literature by
Thompson [1991]. They recommend extreme caution in interpreting epidemi-
ological findings regarding the joint effects of multiple risk factors. Phillips
[2008] notes that the functional basis of the potential interactions identified
by the study of statistical epistatic effects in human disease has been revealed
in only a few cases. According to authors such as Achkar and Fiocchi [2009],
not enough resources are now at hand to perform all that is required to study
epistatic interactions. They claim that true biological interactions may ulti-
mately be better identified using molecular methods, rather than statistical
methods [Cordell, 2002]. In an essay, Moore and Williams [2005] explore the
relationship between biological and statistical epistasis. They explain that bi-
ological epistasis can occur without evidence for statistical epistasis notably if
the individuals sampled do not present variations regarding their biomolecules
interactions. However, they also present some counterexamples suggesting that
inference about biological epistasis from statistical results may be possible even
if particularly challenging. If all biological information from genetic, genomic,
proteomic and metabolic are accessible, links between the two definitions of
epistasis may be feasible.

Even if challenging the investigation of epistasis is indispensable in order to bet-
ter understand the complex architecture of genetic data. Indeed, when looking
for the role of genetic variants in the susceptibility of a disease it is common to
see that most single variants explain individually very little of the risk for any
given disease. The genetic architecture of disease is likely to be a mix of differ-
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ent types of genetic effects including epistasis, gene-environment interactions,
and marginal effects. Regarding epistasis, some studies have explained that
this phenomenon may be ubiquitous in human biology and may even have a
more important role than independent main effects [Moore, 2003; Moore and
Williams, 2009]. Even if the detection of epistasis is currently a challenging
task it is also a subject of a large amount of research as evidenced by the wide
number of methods that have been proposed to this end in the last few years
(presented in more details in Section 2.3).

1.2 Genome Wide Association Studies
With the rapid development of technologies of DNA sequencing and high-
density genotyping arrays, access to genetic variants has become easier and
studies that rely on a large number of genetic variants covering the whole
genome are nowadays common. These studies are known as Genome Wide
Association Studies (GWAS) and have been very popular since the mid-2000s.
In this section, we will present association studies and the different aspects of
a GWAS, from the data collection to the statistical analysis.

1.2.1 Linkage analyses and association studies
Genetic mapping refers to the variety of different methods that aim to de-
termine the positions and the linear sequence of genes in the genome. These
methods can also be used in order to map and identify genes that are involved
in the susceptibility of a disease [Altshuler et al., 2008]. Disease genes investi-
gation can be performed using genetic linkage or using association studies.

Linkage analysis

The traditional approach to map disease genes has been linkage analysis. Link-
age analysis investigates "the dependence in inheritance of genes at different
genetic loci, on the basis of phenotype observations on individuals" [Thompson,
2003]. More precisely, it aims at identifying chromosomal regions containing
disease genes by studying cosegregation of genetic markers with the disease in
families [Baron, 2001]. Cosegregation corresponds to the tendency for closely
linked genes and genetic markers to be inherited together. By looking for ev-
idence of cosegregation with other genes whose locations are already known,
linkage analysis will allow determining the approximate chromosomal location
of a disease gene. Indeed, markers that are transmitted through families in
a manner that parallels the transmission of the disease will provide evidence
for the general chromosomal location of the disease gene [Thomas, 2004]. This
approach has proved to be successful for locating genes contributing to mono-
genic disorders. However, linkage studies are less helpful for complex traits,
where multiple genes play a role in disease causation. They can also require
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Figure 1.8: Direct and indirect association in GWAS from Hirschhorn
and Daly [2005]. Here the genotyped associated genetic markers are presented
in red, causal genes in green and the non genotyped marker in blue.

costly procedures for the collection of family data [Baron, 2001].

Association studies

In comparison to linkage analyses, association studies may be more econom-
ical and easier to perform. They are also known to be more powerful than
linkage studies for identifying genetic polymorphisms contributing to complex
diseases if the underlying causative variants are not very rare [Morris and
Cardon, 2003]. The aim of association studies is to identify disease suscepti-
bility gene variants by comparing genetic marker frequencies usually between
affected and unaffected individuals. This study pattern corresponds to a case
control design in which the genotype of two groups of unrelated participants is
compared: people with the disease and similar people without. If the allele of
a genetic marker is significantly more frequent for affected individuals, then it
can be deduced that this allele is associated with the disease (directly or indi-
rectly). Thus, linkage and association should not be confused with one another.
Linkage refers to the relationship of loci, whereas association refers to the rela-
tionship of alleles at a frequency greater than predicted by chance [Pulst, 1999].

However, caution has to be taken before interpreting a significant association
obtained from an association study. It can refer to a direct or an indirect as-
sociation (as presented in Figure 1.8). In the first case, the genetic marker is a
causal marker that is directly involved in the presence of the phenotypic trait
and might implicate an associated gene. In the second case, the causal marker
is not directly typed but is strongly correlated with one or several other typed
genetic markers because of the presence of linkage disequilibrium. These mark-
ers in high LD with the real causal variant may present a significant statistical
association that will represent an indirect association [Bush and Moore, 2012].

The first association studies focused on pre-specified genes or group of genetic
markers. The objective was to test the association between a phenotypic trait
and a specific region selected on the basis of previous biological knowledge or
linkage analysis results [Laird and Lange, 2011]. However, for many complex



1.2. Genome Wide Association Studies 17

traits, the possible causal genes are not yet known, what can limit the use of
candidate genes approaches.

With the completion of the Human Genome Project in 2003 and the Inter-
national HapMap Project in 2005, 2007 and 2009 [Gibbs et al., 2003; The
International HapMap Consortium, 2005], strong advances in the design of
population-based association studies have been made possible. The Human
Genome Project was an international project conducted over 15 years with the
objectives to determine the sequence base pairs of the entire human genome
and to obtain the complete mapping of all the genes of human beings. The
HapMap project (short for "haplotype map") was an international project de-
signed to build a catalog of human genetic variation across the genome and to
characterize correlations among genetic variants [Bush and Moore, 2012]. The
project allows describing haplotypes, including their locations in the genome
and how common they are in different populations throughout the world. Par-
allel to the completion of these projects, major improvements in the genotyp-
ing technology were observed with a strong decline of genotyping expenses
which make possible to genotype several hundred thousands of genomic mark-
ers across the human genome [Laird and Lange, 2011].

Genome Wide Association Studies (GWAS) emerged in this context as a new
type of population-based association analysis. In GWAS, hundreds of thou-
sands of genetic variants among the whole genome can simultaneously be in-
vestigated. The objective is to identify those variants that are associated with
a phenotype of interest without being restricted to a set of pre-specified genetic
markers. Since the early 2000s, GWAS have become a powerful tool for inves-
tigating the genetic architecture of complex diseases and have been successful
in identifying hundreds of genetic variants [Welter et al., 2014; Li et al., 2012].

1.2.2 Sample selection in GWAS
Even if the genotyping costs strongly decline in the past years due to improve-
ments in genotyping efficiency it is still expensive to genotype a large number
of individuals. Precautions have to be taken when selecting individuals that
will participate in a GWAS. The objective is to recruit a large enough number
of individuals to ensure a sufficient statistical power for the identification of
associations in the study while limiting too important genotyping expenses.

For quantitative phenotypes, a strategy to limit cost consists in genotyping in-
dividuals whose trait value presents important deviations from the population
mean. This principle is known as "selective genotyping" and allows to increase
power for detecting association [Huang and Lin, 2007]. However, as the se-
lection of the individuals depends on phenotypic values, particular statistical
methods are needed to analyze such a data set. In a case control design, the
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individuals forming the two groups need to be comparable, the control group is
composed of subjects that match cases according to certain characteristics such
as gender, age or ethnicity [Witte, 2010]. This comparability between the two
groups is necessary to limit biases and to avoid confounding factors. Regarding
ethnicity, a strategy when recruiting controls may be to select people living in
the same geographic area than cases or to collect information regarding the
geographical origin of people such as the birth place of parents or grandparents
and to check the groups’ distributions [Lewis, 2002].

1.2.3 Markers collection
The simplest genetic markers that are commonly used in GWAS are single
nucleotide polymorphisms (SNPs). We will present here these markers as well
as the tools that are commonly used to measure them in the genome.

Single nucleotide polymorphisms

Single nucleotide polymorphisms (SNPs) are the most common type of genetic
variations among people. Each SNP represents a single nucleotide variation
occurring at a specific position in the genome. An example of a SNP is pre-
sented in the Figure 1.9. At a specific position in the genome, the nucleotide
cytosine (C) may replace the nucleotide thymine (T) for a minority of individ-
uals. As each individual possesses two homologous copies of each chromosome
(one received from each parent) each specific allele may be present in 0, 1 or
2 copies. For example, possible genotypes at a specific position will be "TT",
"TC" or "CC". If T is the reference, "CC" is coded 0 (referent homozygote),
"TC" is coded 1 (heterozygote) and "TT" is coded 2 (variant homozygote").
Thus, from a statistical point of view, a SNP can be viewed as a categorical
variable with three categories or as a quantitative variable corresponding to
the number of copies.

Figure 1.9: Example of a single nucleotide polymorphism from
https://genomainternational.com

SNPs are abundantly widespread among the whole genome and can be found
either within coding sequences of genes or within non-coding or intergenic

https://genomainternational.com/about-genomics/introduction-to-genomics/
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regions. They occur on average once in every 300 nucleotides in the human
genome, which represents roughly 10 million SNPs for entire genome.

For each SNP, the minor allele frequency (MAF) refers to the frequency at
which the least common allele (here T) occurs in a given population. Histori-
cally a locus was considered as polymorphic if its MAF was at least superior to
1%, this condition is not required anymore [Laird and Lange, 2011] but some
distinctions still exist in the literature regarding the terminology between rare
and common variants. The term SNP may generally be applied to common
variants whereas rare variants may be defined as mutation [Bush and Moore,
2012].

Genotyping arrays

One way to detect SNPs across the human genome is to use SNP arrays.
The first commercial SNP array used for genotyping was released in 1996 by
Affymetrix and targeted about 1,500 human SNPs [Lamy et al., 2011]. Since
then, many different manufacturers have developed microarrays that allow
genotyping a much larger number of SNPs but they differ in terms of tech-
nology, cost and gene coverage [DiStefano and Taverna, 2011]. The most com-
monly used SNP arrays were produced by Illumina and Affymetrix. The chips
proposed by Affymetrix print short DNA sequences as a spot on the chip that
recognizes a specific SNP allele whereas Illumina’s chips used a bead-based
technology with slightly longer DNA sequences to detect alleles. Both number
and type of SNPs considered can greatly variate from one to another chip.
Regarding the number of markers, some Illumina chips can genotype approxi-
mately 2.5 million SNPs whereas other ones proposed by Affymetrix focus on
smaller covering expanses with a number of included SNPs reduced to around
600,000. These latter chips are proposed at a lower price and are designed for
special ethnicity (European, Asian, and African) [Ha et al., 2014].

The choice of the SNPs to consider on a SNPs array is a crucial decision.
They should be selected in order to represent the maximal genetic variation
in the genome. In principle, Manufacturers proposed chips where the genetic
selected markers are correlated with other SNPs that are not genotyped in the
same region. This strategy allows reducing the number of markers to genotype
while assuring a good coverage of the whole genome but also allows avoid-
ing redundant information. These selected markers are known as tag SNPs.
More specifically, each tag SNPs is a marker in high linkage disequilibrium
level with as many other SNPs as possible and is used as a representative of
a LD block region. By choosing only one referring marker, the other SNPs
present in the region will be tested for association indirectly (as presented in
Figure 1.8). When a tag SNP presents a significant association, linked SNPs
have to be investigated as possible causal SNPs. Tag SNPs have been defined
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using the LD-information of the HapMap project in order to provide adequate
coverage of the genome for various ethnicities. SNPs that are not considered
are in strong LD with at least one genotyped tag SNP (r2 ≥ 0.7 or 0.8) [Laird
and Lange, 2011]. Thus, even though the total number of common SNPs ex-
ceeds 10 million, considering 500,000 tag SNPs in the human genome should
be sufficient to represent common variation in non-African populations [Viss-
cher et al., 2012]. As haplotype block patterns vary between ethnicity, different
sets of tag SNPs have to be considered when performing association studies.
For example, African population tends to have more different haplotypes due
to the occurrence of more recombination events in the population history and
thus, more SNPs are needed for a study focusing on African genomes [Bush
and Moore, 2012].

1.2.4 Data analysis
Data qualities control

Preprocessing is the first step that is performed once SNP array data are
collected for each individual. It consists of background correction and normal-
ization across arrays following by the summarization of feature intensities into
genotype classes (AA, AB, BB). The normalization step is aimed to correct for
non-biological or technical variability in microarray data. Indeed, errors and
bias may arise due to many circumstances as sample preparation, hybridiza-
tion, instrumental noise and other factors. Then, a classification algorithm is
used to transform the measured intensities into genotypes. These preprocess-
ing steps will not be further examined in this thesis, and we will now present
quality control procedures that are required once the data are preprocessed.

Before conducting any analyses of association it is necessary to filter out sam-
ples and genetic markers that could mislead the analysis. With the huge num-
ber of genetic markers genotyped for a GWAS, even a small portion of errors
can lead to important false results and quality control is thus a crucial step to
undertake. Quality control procedure follows different steps:

• Sample call rates: It corresponds to the proportion of markers with non-
missing data for a specific genetic sample. A low call rate may be indica-
tive of a poor quality DNA sample and the corresponding sample should
be removed from the data set. No consensual threshold is fixed, it may
vary between studies according to various criteria such as the genotyp-
ing platform used, the quality of the DNA samples, or the distribution of
missing genotype rates across the entire sample set [Turner et al., 2011a;
Anderson et al., 2010]. Usually, individuals with a call rate ≤ 90% are
removed but some authors recommend using a higher threshold around
97 − 99% as in the study of Wellcome Trust Case Control Consortium
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[2007].

• Heterozygosity: This quality criterion corresponds to the proportion of
heterozygous genotypes for a given individual. Like sample call rate,
heterozygosity rate can be used as a measure of DNA sample quality.
Indeed, an excessive or reduced proportion of heterozygous genotypes
in a genetic sample may be indicative of DNA sample contamination or
inbreeding [Anderson et al., 2010]. Individuals with excessive or reduced
proportion of heterozygous genotypes are identified by considering the
mean heterozygosity among the sample: Individuals with a heterozygos-
ity rate higher or lower than 2 times the standard deviation of the mean
are usually removed [Luzón-Toro et al., 2015].

• Sex inconsistencies: The conformity between the reported sex and the
predicted sex is checked for each individual in the sample. The individuals
presenting discordant sex information are removed.

• SNPs call rates: It corresponds to the proportion of genetic samples per
marker with no missing data. Like for the sample call rates, the propor-
tion of missing data is a good indicator of a marker quality. Classically,
markers with a call rate less than 95% are removed from the data set.

• Minor allele frequencies (MAF): The minor allele frequency of a marker
corresponds to the frequency at which the less frequent allele occurs in
a population. Usually, GWAS are used to detect a trait association with
common SNPs, namely markers with a MAF ≥ 0.01. They are however
not efficient to detect rare variants. If they are analyzed in a GWAS,
the corresponding statistical tests will have extremely low power [Turner
et al., 2011a]. Depending on the study, SNPs with a MAF ≤ 0.01 are
removed. This threshold can be increased up to 0.05 in some studies.
It is worth noting that markers with a low MAF can bring technical
difficulties and lead to genotyping errors.

• Identity By Descent (IBD): Identity By Descent is a metric of related-
ness between two individuals. Two sequences observed in two individuals
are IBD if they have been inherited from the same ancestor without
recombination. In GWAS the genetic samples have to be unrelated, in
order to avoid bias in the analysis. The presence of not independent
samples could lead to high level of correlation and overrepresentation
of alleles. Thus related samples need to be excluded from the analysis.
The determination of IBD for each samples pair involves the calculation
of the proportion of common alleles. If we set τ the proportion of IBD
shared alleles between two individuals, we will expect that τ = 1 for
duplicates or monozygotic twins, τ = 0.5 for first-degree relatives (full
siblings, parents-offspring), τ = 0.25 for second-degree relatives (half sib-
lings, grandparent-grandchild), τ = 0.125 for third-degree relatives (first
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cousins). Some variations may be observed for these theoretical values
due to disturbing factors such as genotyping errors or linkage disequilib-
rium. Usually, one individual from a pair presenting an IBD value greater
to a defined threshold is removed. One value that can be chosen for this
threshold is 0.1875 which is halfway between the expected proportion for
third- and second-degree relatives [Anderson et al., 2010; Kevans et al.,
2016].

• HardyWeinberg Equilibrium (HWE) test: The Hardy-Weinberg principle
states that allele frequencies in a population will remain constant from
generation to generation in the absence of other disturbing factors. Let
consider a biallelic locus with variants A and a, with the three possible
genotypes: AA, Aa and aa. If p is the frequency of allele A, and q the
frequency of allele a, the HWE expected that the frequency for the three
genotypes will respectively be p2 for the AA genotype, 2pq for the Aa
genotype, and q2 for the aa genotype and that their sum will equal 1
[Wittke-Thompson et al., 2005]. The Hardy Weinberg Equilibrium is
generally illustrated with the equation: p2 + 2pq + q2 = 1. Test for the
deviation of the Hardy Weinberg Equilibrium can be assessed using a
Chi-Square goodness-of-fit test where the observed genotype counts are
compared with the expected values under HWE. Markers deviating from
the equilibrium are usually excluded from the study. Sometimes, the
verification of HWE is made only among controls.

Accounting for population structure

If the use of unrelated individuals in population based GWAS brings several
advantages over family studies (recruitment of individuals relatively easy, use
of standard statistical analysis techniques) it can lead to a high number of
false-positive findings and low power due to population stratification confound-
ing effects [Laird and Lange, 2011]. Population stratification occurs when the
study samples consist of several sub-populations that show differences in allele
frequencies possibly due to different ancestry. A population stratification may
have an impact on the study findings if the sub-population variation among
the allele frequencies is combined with a variation of the phenotypic trait un-
der investigation across the sub-populations [Zheng et al., 2012]. In that case,
a significant association may arise for a genetic marker not because of a real
association with the trait but because of allele frequency differences between
the founder populations that comprise the sample. Several approaches exist for
dealing with population substructure as genomic control [Devlin and Roeder,
1999], structural association [Pritchard et al., 2000] or Principal Component
Analysis (PCA) [Price et al., 2006]. We will briefly present this latter method.
The first principal component obtains with a PCA accounts for as much vari-
ation as possible in the data in a single component. The first principal compo-
nents are supposed to be highly correlated with the geographical position of
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populations throughout the world and thus may reflect the environmental and
cultural variation in worldwide populations, as well as population migration
[Zheng et al., 2012]. The principal components can then be incorporated into
a regression model when testing for marker association.

SNPs modeling

For a bi-allelic locus there are three possible genotypes: AA, Aa and aa. A is
a risk allele if this allele is more common in cases than in controls. A genetic
model refers to a specific mode of inheritance and defines the relationship
between genotype and phenotype. The more common models are the following
[Thomas, 2004]:

• Dominant model: A is dominant over a if a single copy of the allele A
increases risk. Carrying either the aA or AA genotype has an equiva-
lent association with risk compared to the genotype aa. In this model,
genotypes AA and aA are compared to the genotype aa.

• Recessive model: Two copies of the variant allele are necessary to increase
the risk. Here the genotype AA is compared to genotypes aA and aa. A
is recessive to a and conversely, a is dominant over A.

• Additive model: In this model, there is a linear increase in risk for each
copy of the risk allele. The heterozygotes genotype aA have an interme-
diate effect between the effect of the two homozygotes genotypes. Here,
the genotype AA is compared to genotype Aa but also to genotype aa.

• Co-dominant model: All three genotypes have different effects on disease
risk but the heterozygotes genotype aA may not necessarily have an
intermediate effect between the effect of AA and aa. The co-dominant
model includes additive models.

We have presented these four different genetic models in the context of a
binary phenotypic trait but the same models can be considered for continuous
outcomes. These different models can be retrieved depending on the way that
genotype data is encoded. For example if we consider the three genotypes: AA,
Aa and aa for a SNP, the codage 1, 1, 0 will correspond to a dominant model,
1, 0, 0 to a recessive model and 2, 1, 0 to an additive model. A co-dominant
model cannot directly be coded from a single SNP, it could correspond to
1, x, 0 with x ∈ [0, 1] unknown. The choice of the genetic model to consider
and the resulting data encoding will have an influence on the statistical power
of the association test [Bush and Moore, 2012]. However, the correct mode of
inheritance is usually unknown and an additive model is generally considered
in most GWAS. This model will have a good power to detect additive or
dominant effects but will be limited if it is a recessive model that lies under
the real genotype-trait relation. A co-dominant model will be the most powerful
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one to detect associations when the genetic model is not known according to
Lettre et al. [2007]. In this thesis, we will consider an additive genetic model.

Single marker analysis

The most commonly used approach for detecting genetic association in GWAS
is the single marker analysis. In this analysis, each marker is analyzed in-
dividually for a possible association with the phenotype. The statistical test
conducted depends on various factors such as the study design (population or
families), the genetic model or the type of phenotypic traits (usually binary or
continuous). In the following we will focus on population based study designs
that use unrelated individuals under an additive genetic model.

The standard tool for testing the association between a single marker and
a continuous outcome is to use a generalized linear model (GLM) and most
commonly the analysis of variance (ANOVA). ANOVA is similar to linear re-
gression with categorical predictor variables which are genotypes and potential
categorical covariates (such as sex, age, known clinical covariates, population
stratification components). In the case of binary traits, the association anal-
ysis of a marker can be realized using different types of tests. One commonly
used test is the Pearson’s chi-squared test, that is based on allelic or genotypic
contingency tables. It compares the observed alleles/genotypes counts in cases
and controls with their expected values under the null hypothesis that the dis-
ease status and genotypes are independent. Another family of tests also based
on contingency tables are the Cochran-Armitage Trend Tests. These tests aim
to find a linear trend between the probability of having the disease and the
genotypes. A fisher’s exact test is often used when the MAF is small and the
asymptotic normal distribution does not provide a good approximation of the
null distribution of the test statistic. We can also cite the Hardy-Weinberg
Disequilibrium Trend Test that is based on the difference of HWE in cases and
controls to test for association [Zheng et al., 2012]. However, those tests can
not take into account possible confounding effects. A more flexible approach
consists of using a logistic regression model belonging to the class of GLM that
permits to adjust for potential covariates. Logistic regression can also provide
adjusted odds ratios as a measure of effect size. Details on the use of GLM in
the detection of single marker association will be presented in Section 2.1.1.

Regardless the statistical test used, the p-values obtained are then corrected
to adjust for multiple comparisons. Multiple comparison issue and procedures
that allow adjusting for them will be presented in Section 2.1.2.

Results of GWAS analyses, after p-values correction, are often represented by
a Manhattan plots as presented in Figure 1.10.

In these plots, genomic coordinates are displayed along the X-axis, with the
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Figure 1.10: Manhattan plot.

negative logarithm of the association P-value for each marker (SNP) displayed
on the Y-axis, meaning that each dot on the Manhattan plot represents a SNP.
Because the strongest associations have the smallest p-values, their negative
logarithms will be the greatest. Markers that are considered as significant after
multiple testing corrections are displayed in blue. In this example, some SNPs
on the chromosome 6 seem to be associated with the trait of interest.

Replications

In order to validate any significant association finds in a GWAS one or several
replication studies have to be carried out. Chanock et al. [2007] suggested
an ensemble of criteria in order to establish positive replication. Among their
recommendations, they advise for example to use a sufficient sample size in
order to provide adequate statistical power to the initial association detection.
They also recommend using the same genetic model as the one reported in
the initial study. Replication studies are conducted using the same design as
the original study with similar phenotype and similar covariates but with an
independent sample of individuals. The new subjects are selected from the same
population in order to confirm the findings in the population that was targeted
by the original study. If the effects are confirmed, new replication studies using
datasets drawn from other populations may be realized to determine if the
initial findings are specific to the first population [Bush and Moore, 2012].

1.2.5 Heritability
Complex disorders are the result of the influence of multifactorial causes where
the effects of multiple genes are coupled with environmental factors. The real
influence of each factor is however unknown and difficult to evaluate. One mea-
sure allowing to distinguish the role of genetic and environment is heritability.
More formally, heritability corresponds to the proportion of the phenotypic
variation in a particular population that is due to genetic factors.

If we consider a quantitative trait with phenotypic value P we can write its
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decomposition as:
P = G+ E + E ×G

where G and E correspond respectively to the genetic and environmental fac-
tors and E ×G to their interaction.
Assuming independence of these different terms, we can decompose the phe-
notypic variance of the trait as:

VP = VG + VE + VE×G

where VG, VE, VE×G are the corresponding variance of genetic, environmental,
and genotype - environment interaction terms. The genetic variance, VG is due
to all genetic effects which include additive effects Va, dominance effects Vd
and epistatic effects Vi and can be written as: VG = Va + Vd + Vi.

Heritability can be defined in two different ways:

• Narrow sense heritability: h2 = Va
VP

corresponds to the fraction of the
phenotypic variance of a quantitative trait that is due to additive genetic
factors.

• Broad sense heritability:H2 = VG
VP

corresponds to the fraction of the phe-
notypic variance that is due to all genetic factors including dominance,
additive and epistasis effects.

In both cases, the value of heritability always lies between 0 (no genetic con-
tribution) and 1 (all differences on a trait reflect genetic variation) but an
estimation of heritability for a particular trait is never fixed. Heritability can
depend on the population considered because both genetic and environmental
variance can differ across populations. However, some similarities can be ob-
served among populations. Heritability is usually high for traits such as height
in human and low for fitness traits [Visscher et al., 2008]. Other divergences
for heritability values can be observed between sex and overtime.

Various methods exist to estimate heritability. We will present three methods
based on mixed linear models that have been reviewed by Vinkhuyzen et al.
[2013] to estimate genetic variance and narrow sense heritability for a quanti-
tative phenotype. The first type of methods that have been used are pedigree
studies and more particularly twins studies. Genetic variation is estimated by
the phenotypic resemblance of twin pairs and environmental variation by the
phenotypic variation. This design has then been extended to families with full
or halfsiblings where the narrow-sense heritability is estimated by regressing
the phenotypic similarity of a pair or relatives on their genetic similarity. The
authors also present a population based method where all SNPs are included
in the model to estimate additive genetic variance.
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Figure 1.11: GWAS finding. This diagram shows all SNP-trait associations
with p-value ≤ 5.0 × 10−8, published in the GWAS Catalog. Each color refer
to a trait category. http://www.ebi.ac.uk/gwas/

Heritability for dichotomous traits can be estimated using a liability threshold
model on the phenotype. This model assumes the existence of a quantitative
trait, called the "liability score". An individual is affected if the probability that
their liability score exceeds a fixed threshold. Tenesa and Haley [2013] reviewed
four commonly used approaches to estimate the heritability in case of a binary
phenotypic trait. These approaches include a general method for population
data, a twin based approach, the Falconer’s method and an approach based
on generalized mixed linear models.

1.3 GWAS limitations and recommendations
During the past decade, GWAS have shown success to detect associations
through LD between common SNPs and disease phenotypes [Visscher et al.,
2012; Seng and Seng, 2008]. The number of publications based on GWAS in-
creases continually making GWAS a common approach in the detection of ge-
netic markers. New associations have then been found and reproduced among
studies for varied pathologies included inflammatory bowel disease[Duerr et al.,
2006], age-related macular degeneration [Klein et al., 2005], type 2 diabetes
[Saxena et al., 2007; Scott et al., 2007; Zeggini et al., 2007], breast cancer
[Hunter et al., 2007; Easton et al., 2007], prostate cancer [Thomas et al., 2008;
Yeager et al., 2007] and even more as presented in Figure 1.11.

http://www.ebi.ac.uk/gwas/
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However, all these discoveries are tempered by several limitations [Witte, 2010;
Du et al., 2012]. GWAS findings have shown to be difficult to reproduce be-
tween studies and the effects found in GWAS only explain a small part of the
real phenotypic variation expected from classical family studies [Manolio et al.,
2009]. For example, human height is a classic complex trait with an estimated
heritability of about 80%. However the loci that have been associated with this
trait in several GWAS were able to account for less than 5% of the phenotypic
variance [Lettre et al., 2008; Gudbjartsson et al., 2008; Weedon et al., 2008].
These limitations can partly be explained by the characteristic of genetic data.
The huge number of variants to analyses is confronted to sample size involving
only hundreds of subjects, what leads to statistical challenges for estimating
and identifying relevant genetic risk factors. In the following, we will present
the principal limitations observed in GWAS and the solutions that have been
proposed to take into account these issues.

1.3.1 Limits of GWAS
Interpretation of findings

If GWAS have allowed detecting a large number of associated genetic variants,
some of these findings were sometimes unforeseen. Thus, some well-known ge-
netic risk factors have been missing among the founding effects. Non coding
SNPs seem to have a greater role in common diseases than what was expected
as an important part of associated SNPs were located in non coding region in
the genome without referring to specific genes [Hindorff et al., 2009] Another
important limitation of GWAS findings is that a major part of identified vari-
ants present relatively moderate or even weak effects and low predictive values
which can limit their clinical relevance [Witte, 2010].

Reproductibility

A second limit is that most of the GWAS findings have shown to be difficult
to reproduce. Lack of reproducibility among studies may be explained first
by false discoveries in GWAS. Association does not imply causation and any
significant association can occur for other various reasons than a real causal
genetic association. It may be possible that the significant marker is in reality
associated with another factor (a confounder) which is linked to the disease
but is not in the same causal pathway. For example, genetic ancestry is a
major confounder in GWAS, ethnic groups often share distinct dietary habits
and lifestyle characteristics that are correlated with phenotypic differences. In
GWAS samples, individuals are adjusted for ancestry differences before any
analysis in order to prevent the presence of many false positives. However,
It has been suggested that shared environments among relatives may not be
adequately taken into account. Thus, associations can emanate from diverse
origins, the markers that explicitly explain the susceptibility to the disease
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will be hidden among the others in an unknown proportion. Another reason
explaining the lack of reproducibility among studies is the fact that studied
diseases are multifactorial and a large number of markers with small effects
may have an impact on the susceptibility to the disease. As small effects can
be difficult to identify in such high dimensional studies as GWAS, they might
be detected only on few studies.

Missing heritability

Many reasons have been suggested to explain missing heritability [Manolio
et al., 2009]. A first explanation is that a large number of variants are suspected
to present small or moderate effects sizes and have not been identified yet. For
example, [Yang et al., 2010b] developed a new method to quantify the propor-
tion of phenotypic variation when considering all SNPs simultaneously. They
showed that a substantial proportion of genetic variation for human height was
associated with common SNPs whose effects were too small to be statistically
significant and have thus not been discovered yet. They showed that almost
40% of the phenotypic variance may remain hidden in undiscovered SNPs in
addition to the variants that already explain about 5% of height heritability.
Another important causal factor of missing heritability seems to be due to the
unaccounted effect of rare variants. Indeed, GWAS are designed to detect as-
sociations between common diseases and common SNPs that present a MAF
superior to 5% and analyze of variants with smaller MAF may be difficult us-
ing existing genotyping arrays. Thus, this design does not allow to consider the
possible impact of rare variants that contribute to the susceptibility of com-
mon diseases [Gibson, 2012; Cantor et al., 2010]. This lack of consideration of
rare variants may be one of the reasons why GWAS findings account for a little
amount of the real heritability [Witte, 2010]. Rare variants identification needs
the development of new methods because their detection may present a num-
ber of statistical challenges [Cantor et al., 2010]. As rare variants correspond
to new mutations, their identification may be even more robust to population
stratification and some authors suggest to rather use family designs [Laird and
Lange, 2011]. Other causes of the unexplained heritability may be due to the
fact that genetic variation is evaluated using only SNPs in GWAS whereas
other variants as copy number variants may account for some trait heritability
[Redon et al., 2006]. Another explanation is the lack of consideration of the
role of the complex structure in genetic data by current GWAS but equally the
non-consideration of gene-environment interactions [Thomas, 2010]. Finally, it
has also been suggested that the non-adequacy between heritability estimated
in pedigree studies and in GWAS may come from incorrect estimation mea-
sures. For example, a wrong consideration of environment in family studies
[Maher, 2008] or an inappropriate definition of the global phenotypic variation
to estimate heritability in GWAS.
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Single SNP analysis

Another limit of the use of GWAS univariate analysis in the research of sig-
nificant genetic markers is the fact that these analyses lack to consider the
complete genetic architecture of the disease. For one specific regression equa-
tion corresponding to one marker, coefficients will be forming ignoring the role
of any remaining markers. But, if the studied marker is linked with any other
one in the whole data set, it can lead to an inaccurate estimation of the individ-
ual marker effect on the phenotype. As it is well-known, genetic markers rarely
work in an individual way, they present strong correlation among themselves,
notably due to linkage disequilibrium, and even shown epistatic effects. These
effects cannot be taken into account in a univariate analysis framework and
may be explanatory causes to missing heritability. Beside that the univariate
framework will fail to consider these type of effects, it may also induce mis-
leading estimates of direct association. As said by Cordell [2002] "if the effect
of one locus is altered or masked by effects at another locus, power to detect
the first locus is likely to be reduced and elucidation of the joint effects at the
two loci will be hindered by their interaction". Not considering the complex
genetic structures as multiple interactions between markers may thus be an
explanation for the missing heritability [Haig, 2011].

1.3.2 Solutions and recommendations
Moore and Williams [2009] present several recommendations in order to im-
prove the usefulness of genetic association results. Among their suggestions is
the need to develop new powerful analytical methods that are able to cope with
the complexity of genetic architecture. This need of new methods is suggested
by other authors [Du et al., 2012; Witte, 2010; Moore and Ritchie, 2004], they
also explain that more complex statistical analysis tools will be required to
detect epistasis and rare variants now that data on less common variants be-
come available. Thus, in the past years, a large number of methods have been
developed in order to respond to the numerous challenges that have arisen in
GWAS analysis and are still the subject of important investigations.

Facing the limit of GWAS in investigating the individual role of each genetic
marker, looking for combinations of SNPs would be more efficient regarding
the complexity of the genetic architecture of common disease. However, in the
high dimensional context of GWAS, a multi-locus analysis presents numer-
ous statistical and computational challenges and is more complex than single
variant analysis [Moore and Ritchie, 2004]. Group level analyzes have been
considered to this end. These methods seek to simultaneously analysis sets of
genetic markers. The first methods were based on haplotypes but have rapidly
been supplanted by gene-based approaches [Neale and Sham, 2004]. Group
level approaches will be presented more thoroughly in Section 2.1.3.
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Additionally, a plurality of statistical methods has been developed to cope
with GWAS issues. These methods are based on diverse theoretical founda-
tions whether it be regression based methods, machine learning [Dasgupta
et al., 2011; Szymczak et al., 2009] or even bayesian methods [Stephens and
Balding, 2009]. An example can be presented with mixed models that are used
to different ends in GWAS. Indeed, approaches based on mixed models have
been proposed in the context of association testing, heritability estimates, and
correction for population stratification [Dandine-Roulland and Perdry, 2015].
In the case of association testing, random effects are assigned to a set of genetic
variants. SKAT [Wu et al., 2011] is one of the methods based on this defini-
tion. Designed to detect sets of common or rare variants in a region, it showed
powerful results against traditional rare-variant association tests. Regarding
correction for population stratification, the use of mixed models can present
more efficient results than resorting to Principal Component Analysis [Kang
et al., 2010].

Moore and Williams [2009] also recommend to not forget the principles of
classical genetics, as the use of pedigree based studies, that may have been
overshadowing by the emergence of new genomics methodologies as GWAS.
This idea to not only consider population GWAS design is expressed by Laird
and Lange [2011]. They suggest to rather use family designs to identify rare
variants. Indeed, as they correspond to new mutations their identification may
be even more robust to population stratification and a population design may
not be appropriate.

Finally, regarding the particular case of epistasis, it is needed to improve the
knowledge of biological and statistical epistasis and its role in human health
and disease. Epistasis has not been sufficiently investigated in current studies
mostly because of the methodological difficulties to properly explore interac-
tions in genetic data sets [Carlborg and Haley, 2004]. But, even if detection
of epistatic effects is challenging, it is greatly assumed that this type of ef-
fects should play a relevant role in the regulation of a number of phenotypic
traits and may explain a part of the missing heritability. Indeed, Zuk et al.
[2012] suggest that heritability may be underestimated in GWAS because cur-
rent estimates of heritability are defined on the assumption that traits do not
involve genetic interactions. They thus proposed a model that takes into ac-
count epistatic interactions in relation to Crohn’s disease. They found that
80% of the missing heritability could be due to genetic interactions. A better
comprehension of epistatic effects and their extent are necessary in order to
understand the complete architecture of genetic data. To this end, the devel-
opment of new detecting approaches is required as well as the development of
better experimental methods in order to confirm statistical epistasis findings
[Moore and Williams, 2009]. These authors also recommend the integration of
systems biology into human genetics as it may be the more efficient way to



32 Chapter 1. Genetic context of Genome Wide Association Studies

narrow the division between biological and statistical epistasis. The develop-
ment of methods to detect epistasis is particularly challenging. Indeed, if the
marginal analysis of hundreds of thousands of SNP predictors is possible, with
already several methodological constraints, examining all pair-wise or higher-
order combinations of SNPs in a GWAS that can include one million of genetic
markers is a lot more complex and demanding process even for highly efficient
algorithms. The investigation of epistasis requires new statistical methods less
computationally intensive [Cantor et al., 2010]. Another challenge concerns
the selection of genetic markers to consider in the analysis [Moore and Ritchie,
2004]. One strategy consists in considering only SNPs that have been detected
as individually significant but this strategy will include bias in the analysis.
Another possibility is to select SNPs on the basis of knowledge of biological
function.

In Section 2.3 we will present methods that have been developed to detect
epistasis in GWAS. We will first present methods that focus on markers inter-
action before introducing group level interaction methods. Chapter 3 will be
devoted to the presentation of a new approach to detect epistasis at the gene
level that we recently published [Stanislas et al., 2017].



Chapter 2
Methodological background for epistasis
investigation

In recent years a number of methods for studying epistasis have been proposed
and reported in various reviews [Niel et al., 2015; Wei et al., 2014; Steen, 2012].
They vary in terms of their data analysis (either based on the whole genome or
on a pre-selected set of genetic markers [Sun et al., 2014]) and their statistical
methodology (bayesian, frequentist, machine learning or data mining). Most
of them focus on single-locus interactions whereas some others are rather in-
terested in considering interactions at a group level. This chapter will focus on
the presentation of some of these various existing approaches with a particular
interest on methods considering group level.

As the various strategies are based on different statistical methodologies, we
will start this chapter with a presentation of the methodological framework
required in the context of epistasis investigation. We will first present the tra-
ditional methods that are routinely used in GWAS to test association between
genetic variants and a phenotype while in a second section, we will introduce
statistical methods adapted to the context of high dimensional data set. The
third section of this chapter will be dedicated to the presentation of peculiar
approaches used to detect epistasis.
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2.1 Statistical methods used to detect associ-
ation in GWAS

2.1.1 Generalized Linear Model
Presentation

We consider the linear regression model

y = Xβ + ε (2.1)

where y is a n vector of continuous outcomes, X = (x1, . . . ,xp) is a n × p
design matrix of p explanatory variables, β = (β1, . . . ,βp) the coefficient vector
and ε an error term generated from a normal distribution with zero mean
ε ∼ N (0, σ2I).
The parameters β are traditionally estimated with the ordinary least squares
(OLS) that minimize the least square error,

β̂
OLS = argmin

β

n∑

i=1
(yi −Xiβ)2 (2.2)

with the corresponding solution for the estimation of the coefficients:

β̂
OLS = (XTX)−1XTY.

Linear regression model is a simple, useful and widely used tool for predicting
quantitative responses. But despite its simplicity this model is based on restric-
tive assumptions which are not appropriate in diverse settings. Among those
assumptions is the normality of the error terms. However in many biological
data analyses the normality assumption is not tenable, for example in the case
of count or binary data, discrete distributions are more adequate. Another as-
sumption is that the error terms are constant Var(εi) = σ2 for all observations
i but, it is not rare to observe non-constant variances (or heteroscedasticity),
with for instance variances depending of the mean of the data. Linear regression
model makes also the assumption that the relationship between the predictors
and the outcomes is strictly linear. Predictors that present non linear associa-
tion have to be transformed in order to be incorporated in a linear model.

Generalized linear model (GLM) extends the traditional linear model frame-
work to address these issues. GLM allows the dependent variable to have a
non-normal distribution by considering any probability distribution from the
exponential family. Linear relationship between the explanatory variables and
the mean of the distribution function, µ = E[y|X], is allowed by the use of
a specified link function g(.). Heteroscedasticity issues can also be taken into
account by using a variance function that describes how the variance depends
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on the mean Var(y) = φf(µ) with φ a dispersion parameter and f(µ) a func-
tion of the mean.

For a set of p variables a GLM can be presented as:

g(E[y|X]) = Xβ (2.3)
with g(.) the link function that describes how the mean, µ, depends on the
linear predictor.

The parameters β of a GLM are usually estimated by maximum-likelihood.
Maximum-likelihood estimation entails finding the set of parameters for which
the probability of the observed data is greatest. By denoting θ = (β, φ), the
vector of unknown GLM parameters, we can write θ̂ the maximum-likelihood
estimator as the solution to the maximization problem:

θ̂ = argmax
θ

L(θ; x1, . . . ,xp), (2.4)

with L(θ; x1, . . . ,xp) the likelihood function.

The classical linear regression model is a special case of GLM supposing that
the distribution function is normal y|X ∼ N (µ, σ2I) with constant variance
(f(µ) = 1 and φ = σ2) and using the identity as link function, namely,
g(µ) = µ. The normal likelihood at its maximum can be found as an explicit
function of the observed data x1, . . . , xp and can be shown to be the same esti-
mator than the one obtained with the least squares approach. Maximizing the
likelihood of a normal response is equivalent to minimizing the least squares
criterion presented in Equation (2.2).

When the phenotype y is binary, as for case-control studies, only two values
{0, 1} are possible for the outcome. Instead of modeling the response y directly,
we rather search to model g(p) with p the probability that y belongs to one
of the two categories and note p(x) = P (y = 1|x) the probability that y = 1.
The regression of y on x is then a conditional probability with E[y|x] = p(x).
To model p(x) we need a function that produce output between [0, 1] for all x
as the logistic function:

p(x) = exp(xβ)
1 + exp(xβ) . (2.5)

This expression can be rewritten after a slight modification as:

p(x)
1− p(x) = exp(xβ) (2.6)

where the quantity p(x)/(1 − p(x)) = odds(x) corresponding to the odds of
presenting the phenotype y = 1 depending on x. By taking the logarithm of
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both side we obtain the logistic regression model:

log
(

p(x)
1− p(x)

)
= xβ (2.7)

where the left part of the equation defines the logit function, linear in x.

The logistic regression model can be recovered using a GLM with the logit as
link function g(µ) = logit(µ) = log[µ/(1 − µ)]. The distribution function is
generally chosen to be the Bernoulli distribution yi ∼ B(µ). Here the variance
is not constant and depend of the mean with f(µ) = µ(1 − µ) and φ = 1.
Unfortunately and unlike linear regression, it is not possible to find a closed-
form expression for the coefficients β that maximize the likelihood function
in a logistic regression model. Instead, iterative algorithms are needed such
as the Newton-Ralphson algorithm or the iterated re-weighted least squares
algorithm.

Interpretation of the coefficients in logistic regression

We consider the simple model:

g(E[y|x]) = β0 + β1x. (2.8)

In linear regression, β1 refers to the average change in y for a unit change in
x. In logistic regression, the coefficient β1 is much less interpretable, it refers
to the change in the log of the odds that the outcome y = 1 occurs.

To interpret the link between the variables and the outcome in a logistic model
it is usually more common to resort to odds ratio. It can be interpreted as the
odds that an outcome will occur given a particular exposure, compared to the
odds of the outcome occurring in the absence of that exposure. If x is a binary
variable, the odds ratio is defined as the ratio of the odds to present y = 1 for
x = 1 to the odds to present y = 1 for x = 0:

OR = odds(x = 1)
odds(x = 0) = p(x = 1)/(1− p(x = 1))

p(x = 0)/(1− p(x = 0)) = exp(β0 + β1)
exp(β0) = exp(β1).

(2.9)
If the variable x is continuous the odds ratio can be defined as:

OR = odds(x+ 1)
odds(x) = exp(β1). (2.10)

Here, exp(β1) is the odds ratio associated with a one-unit increase in the ex-
posure. In the case of a multivariate model the interpretation of each exp(βj)
is an estimate of the odds ratio between y and the corresponding variable x
when the values of the others variables in the model are held fixed.
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An OR = 1 means that the exposure does not affect odds of outcomes. OR ≥ 1
means that the exposure is associated with higher odds of outcome while
OR ≤ 1 means that the exposure reduces the odds of outcome. Odds ra-
tio has to be accompanied by the confidence interval to be interpreted. If the
confidence interval for the OR includes 1, the OR is not statistically significant.

Odds ratio should not be confused with risk ratio that are defined as:

RR = p(x = 1)
p(x = 0) . (2.11)

However when the occurrence of y = 1 is rare (as it is the case for phenotypic
traits corresponding to rare disease) the odds ratio is very similar to the risk
ratio. Indeed, in that case (1− p(x)) ≈ 1 and thus OR ≈ RR.

Accuracy of the model, R2

Once the model’s parameters estimated, the interest is to determine the quality
of the fit by measuring how well the observed outcomes are replicated by the
fitted model. In linear regression, the goodness of a fit is typically assessed using
the coefficient of determination R2. This statistic represents the proportion of
empirical variability in the response that is explained by the regressor variables
X and is defined as:

R2 =
∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2 (2.12)

with ŷ = Xβ̂ the predicted values. By definition, R2 always takes on value
between 0 and 1. A R2 value close to 1 would indicates that a large proportion
of the variability in the response has been explained by the regression. The
criterion for what is considered as a good R2 value will depend on the field of
the application and on how important is the role of other unmeasured factors
on the response. According to the circumstance, a small R2 value might be a
synonym of a good fit.

However there are some dangers of relying on R2 too heavily when interpreting
multiple regression output. For example, one limit of the R2 is that it always
increases as more variables are added in the model. As an attempt to take into
account this phenomenon, an adjusted measure of the R2 has been proposed.
The adjusted R2 is a modification that adjusts for the number of variables in
a model relative to the number of data points and can be calculated as:

R2
adj = 1− (1−R2) n− 1

n− p− 1 (2.13)

with p the number of variables and n the sample size. When a new variable is
added in the model, R2

adj increases only if the new variable improves the model
more than would be expected by chance and might decrease if the effect does
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not improve the model. The R2
adj can be used as an indicator of the fit qual-

ity when we compare two models composed of a different number of predictors.

In logistic regression analysis, there is no agreement upon analogous measure,
but different propositions have been made. We will focus here on the McFad-
den’s R2 which is defined as:

R2
McF = 1− log(Lc)

log(Lnull)
(2.14)

where Lc denotes the maximized likelihood value from the current fitted model,
and Lnull the corresponding value for the null model with only an intercept and
no covariates. The ratio of the likelihoods suggests the level of improvement
over the null model offered by the full model.

An adjusted version of McFadden’s R2 that mirror the adjusted R2 in linear
regression has also been proposed. The adjusted McFadden’s R2 subtract p,
the number of parameters in the model:

R2
McF,adj = 1− log(Lc)− p

log(Lnull)
. (2.15)

As with adjusted R2, the adjusted McFadden’s R2 can decrease with the ad-
dition of a predictor that does not add sufficiently to the model, even if the
R2
McF increases slightly.

Utilization in GWAS

In GWAS, GLM is a standard tool for detecting associations between genetic
markers and a phenotype. The approach consists to use a GLM for each single
marker x as in the following:

g(E[y|x, e]) = β0 + βxx+ βee (2.16)

where βx is the parameter of interest quantifying the association between the
genetic marker and the mean of the phenotype. e is typically a vector of co-
variates, such as age and gender. The link function g(.) is chosen depending on
the phenotype distribution. As binary traits (case-control) are more common
in GWAS, it is often a logistic regression which is performed. A significance
test on the parameter βx will determine the possible association with the phe-
notype y.

In the context of GWAS, this strategy leads to testing hundred of thousand
hypotheses, which will cause concerns such as multiple testing. In order to
control the probability of false positive findings that strongly increase with the
number of tests, it is required to use multiple testing procedures.
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2.1.2 Multiple hypothesis testing correction
In the case of a single hypothesis, a null hypothesis H0 (in GWAS context, no
association between marker xj and y) is tested versus an alternative hypothesis
H1 (the marker xj is associated with the phenotype y). H0 is rejected in favor
of H1 whenever the test statistic lies in a specified rejection region.
The rejection region of a statistical test is chosen with a determined level for
the Type I error α (which corresponds to the probability to reject H0 when
is true) traditionally set to 0.05. If possible, the test is also chosen in order
to maximize the probability 1− β to reject H0 when this hypothesis is really
false, which means in the context of GWAS, to detect an association when it
really exists. This probability defines the power of the test.

When realizing m multiple simultaneous independent tests with the same re-
jection rule, the probability of having at least one Type I error when all the
hypotheses are false is 1 − (1 − α)m. As the number m will get larger, this
probability will soon get close to 1. As an example, if one thousand of markers
are simultaneously investigated with α fixed to 0.05, 50 markers will be ex-
pected to be detected as significantly associated with the trait even if no real
association is actually present.

Multiple testing issue is the subject of abundant investigations and various
multiple testing procedures have now been proposed. Their objective is to
control a Type I error risk that takes into account the number of tested hy-
potheses. These procedures vary in their construction but often share the cost
of a reduction in the power of the individual tests as they will seek to make
these tests more conservative in order to minimize the number of Type I errors
[Austin et al., 2014].

Different rates to control the Type I error risks have been defined, the two most
important used by multiple testing procedures are the Family-Wise Error Rate
(FWER) and the False Discovery Rate (FDR). By setting V the number of
false discoveries, which corresponds to the Type I error, and R the number of
rejected hypotheses, also called discoveries, the two criteria are defined as:

• FWER = P (V ≥ 1)
the probability to observe at least one Type I error,

• FDR = E(Q), where Q =
{
V/R if R > 0
0 if R = 0

the expected proportion of false positives.

Bonferroni correction [Bland and Altman, 1995] was one of the first procedure
to be proposed. This correction controls the FWER and is based on a simple
idea which consists in rejecting any hypothesis whose p-value ≤ α

m
, withm the
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number of tested hypotheses. This ensures that the overall Type I error rate of
α is maintained when performing the m hypothesis tests simultaneously. Al-
though simple to use, this method is however often too conservative, especially
when there is a broad number of tests to conduct as in GWAS. Indeed, when
the number of tests becomes too large, very few p-values are able to pass the
threshold which could lead on a high rate of false negatives and ultimately, a
lack of power of the method.

Controlling the FDR is, on the contrary, a less stringent condition that leads
to more powerful procedures than the ones based on FWER control. This is
explained by the fact that FDR is smaller than or equal to the FWER from
the moment where there are some true H1 among the tested hypotheses, with
equality of the rates when all the hypotheses are null. Thus, methods that
control the FWER will automatically control the FDR with less stringent and
more powerful results for FDR controlling procedures.

Benjamini and Hochberg [1995] proposed a procedure that controls the FDR.
The method is based on ordered p-values, that is, for a set of m tested hy-
potheses, with p1, p2, . . . , pm the corresponding p-values, we considered p(1) ≤
p(2) ≤ · · · ≤ p(m) the ordered p-values and H(i) the null hypothesis related to
p(i). Let k be the largest i for which p(i) ≤

i

m
α∗, the procedure will reject all

the null hypotheses H(i) for which i = 1, 2, . . . , k. Here α∗ correspond to the
level of which the procedure controls the FDR. For example, if α∗ = 0.05, 5%
of the tests considered as significant have in reality a real null hypothesis and
are then false discoveries. The difference with FWER is that α∗ control the
number of false discoveries whereas α control the probability of making only
one false discovery.

2.1.3 Group analysis
By considering each marker individually, GWAS univariate strategies fail to
consider the possible link between the genetic variants. Instead of using a sepa-
rate model for each marker, an alternative approach will be to directly consider
a whole set of markers in a simultaneous way, in order to better examine the
complete structure of the data. However due to the high dimensional context,
traditional multivariate model are not reliable if we do not restrain the analysis
to a reduced number of genetic markers. To do so, an idea consists in group-
ing SNPs together by defining a SNP set and analyzing those SNPs using a
multivariate approach. However, according to the chosen grouping strategy,
SNP sets can sometimes still be excessively large. Thus, one can for example
choose to analyze only a set of defined representative markers among the set
as, for example, tag SNPs [Stram, 2004; Bakker et al., 2005]. Another strategy
consists in using a function for each set that represents the combined effects
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of the belonging SNPs. Both strategies can also be considered together by
first selecting representative markers in the set and represent the global effect
of these selected SNP with a specific function. Then, once the representative
markers or the functions are determined, SNP sets can be analyzed for possi-
ble disease association. With the use of adapted grouping multivariate models,
several SNP sets can be simultaneously considered. In the following we present
SNP sets analysis with more details.

Using SNP sets can provide various advantages over the standard analysis of
individual SNPs. It can be a way to increase statistical power and reproducibil-
ity, genetic effects are more easily detected when SNP effects are aggregated
together. Multiple SNPs modeling also allows to take into account the possible
correlation among SNPs and thus consider linkage disequilibrium (LD) in the
analysis. Not to mention that this strategy can simplify the multiple testing
problem by reducing the number of variables [Fridley and Biernacka, 2011].
Depending on the grouping unit chosen, SNP sets analysis can also improve
interpretability. For example, as genes are the functional unit of the genome,
results may be more biologically interpretable if genes are used as grouping
unit.

Various grouping strategies can be used to define a SNP set. One example is
to define SNP sets using haplotype blocks. Grouping via haplotype blocks is
attractive because they make explicit the use of the LD information [Schaid,
2004b] and various haplotype disease association methods have been proposed
[Schaid, 2004a; Epstein and Satten, 2003; Su et al., 2008]. Unfortunately, hap-
lotypes are not directly observable, and require the use of costly molecular
haplotyping methods to be generated. These methods are not widely used as
they add significant computational expense. Algorithms that are based on sta-
tistical theories to infer haplotypes are preferred for haplotype reconstructions.
Various haplotype inference methods exist as for example the ones reviewed by
Niu [2004]. Haplotype blocks can be generated using softwares like Haploview
[Barrett et al., 2005] that proposes to use several commonly used block defi-
nitions. However, this plurality of definitions lead to different haplotype block
patterns that can be difficult to interpret. Other group definition using LD
information have also been proposed, for example, Dehman et al. [2015] pro-
posed a grouping approach allowing to detect LD block structure in GWAS.
This approach uses a Ward’s hierarchical clustering with a specific dissimilar-
ity based on a LD measure. The algorithm is built with the constraint that
only adjacent groups and/or variables can be grouped together.

Alternatively, one can consider gene set or gene pathway set as grouping strate-
gies by jointly taking all SNPs that are located in or near a gene or a gene path-
way. Several research report have argued for the merit of gene level methods
over haplotype and SNP based approaches [Neale and Sham, 2004; Jorgenson
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and Witte, 2006; Lehne et al., 2011]. First, gene level analysis would provide
more biologically interpretable results as they represent the functional units in
the genome and are defined with more explicit boundaries. Then, consistent
replication at the haplotype level can be more difficult than at the gene level as
suggested by Neale and Sham [2004]. Furthermore, Jorgenson and Witte [2006]
explain that variants in genes may have high probability of being functionally
more important than those that occur outside of a gene. However, we still have
to note that this strategy will omit to consider intergenic regions as well as
many disease-associated SNPs that do not lie in defined genes. Not to mention
that gene level analysis depends on the current knowledge of gene definition
and remaining gaps in knowledge may prevent definition of appropriate gene
sets [Fridley and Biernacka, 2011].

Grouping based on strategies beyond the ones that we have considered are also
possible, as using a moving windows across the genome, but overall, the gene
set strategy is one of the most commonly used approach. In any case, use of
additional grouping strategies can provide alternative and better coverage of
the human genome.

Once defined, a first idea to analyze SNP sets could be to perform a logistic
regression (or linear regression, according to the type of phenotype variable)
with the SNPs markers included as covariates. However, if this method can
be more powerful in some situations than testing each marker individually it
might suffer from low power due to high degrees of freedom, that increases
with the number of modeled SNPs. One can thus seek to limit the number
of markers when creating SNP sets and this for additional reasons. Indeed,
when all genetic markers are combined in a SNP set, there is a risk that SNPs
with no genetic contribution dilute the set signal by adding potential noise
in the analysis and thus leading to low power. The pre-selection of the mark-
ers to use in the analysis can, for example, be done by considering only tag
SNPs that capture the LD information [Qin et al., 2006; Carlson et al., 2004].
Additionally, Wu and Cui [2014] propose a diSNP selection method that se-
lect genetic variants by considering their relative information contribution to
a disease status. However, even if reducing the set to a pre-selected number
of representative markers can improve power by considering only important
SNPs, SNP sets can still remain large and other methods than multivariate
regression to analyze the set will be necessary for a better efficiency.

Various strategies have been proposed for SNP sets analysis as the ones listed
by Lily Wang [2011]. Among the propositions, one consists in computing gene
scores based on individual SNPs tests [Schaid et al., 2012; Lehne et al., 2011].
Other authors propose to use reduction based analytical methods, such as prin-
cipal components and kernels [Fridley and Biernacka, 2011]. For example, one
proposition consists in modeling the effect of a SNP set by using a semipara-
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metric regression model with a non parametric kernel function h(.) modeling
the overall SNP effects of the set [Liu et al., 2007, 2008; Kwee et al., 2008; Wu
et al., 2010b]:

g(E[y|x,E]) = β0 + h(x1,x2, ...xp) + βEE.

x1,x2, . . . ,xp correspond to the SNPs belonging to a defined SNP set and E to
a matrix of potential confounding covariates. Note that the proposed model can
incorporate multiple SNP sets by using several kernel function h1(.), . . . , hs(.).
The use of a kernel function is appealing because it allows to incorporate prior
information into the analysis in the form of weights. Traditional procedures
for GLM models are not applicable in a semiparametric framework. A way to
estimate the parameters of the model is to use the least square kernel machine
(LSKM) procedure [Kwee et al., 2008]. LSKM may be a tough procedure to
use but instead, an alternative consists to resort to restricted maximum like-
lihood (REML) procedures, that are typically applied to mixed models, as it
was noted that LSKM can be represented by a specific form of a linear mixed
model. Liu et al. [2007] remarked that the estimation of ĥ and β̂E with the
LSKM procedure correspond to the respective estimation of random and fixed
effects of a peculiar linear mixed model. Wu et al. [2010b] showed that the lo-
gistic kernel-machine regression outperforms individual SNP analysis when the
causal SNP is correlated with multiple typed SNPs. In 2011 the authors intro-
duced another kernel approach, the sequence kernel association test (SKAT)
[Wu et al., 2011]. In SKAT, the relative importance of each marker can be
controlled by the use of a specific weight. Those weights can be defined in
various ways, for example, as the authors propose to focus their analysis on
rare variants they used a function depending of the minor allele frequency to
define the weights.

A number of approaches that use Principal Component Analysis (PCA) have
also been proposed [Zhang and Wagener, 2008; Wang and Abbott, 2008; Gau-
derman et al., 2007]. The idea is to realize a PCA on the SNPs belonging to the
same set and to retain the first component as the representative variable of the
SNP set. The component captures the overall set structure and thus takes into
account the LD among SNP. Components of each set are then incorporated in
a regression model in the following way:

g(E[y|x,E]) = β0 + βTT + βEE.

with T the matrix of components representing the studied SNP sets and E
a matrix of potential confounding covariates. Using PCA to represent genes,
Chen et al. [2010] extend the previous model by using regularized regression.
They propose the GRASS algorithm that combine both Ridge and LASSO
regression.
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2.2 Statistical methods adapted to high di-
mensional context

The use of traditional multivariate methods such as GLM would be relevant as
long as the set of genetic markers remains small enough (typically with p < n),
which hardly ever happens in the high dimensional context of genomic data. In
the case of linear regression, when p > n, the matrix XTX is not invertible and
the coefficients β̂ are not defined. Additionally, when p ' n, the coefficients
can be determined but the risk is to create overfitted GLM models that will
be too close and dependent on the data. Additionally, Those models will lead
to inaccurate regression coefficients and p-values, producing conclusions that
exaggerate minor fluctuations in the data and will fail to generalise to other
datasets.

In this section we will focus on the presentation of alternative approaches
adapted to the context of high dimensional data sets. We will first present
penalized regression methods which extend standard regression techniques so
that a large number of possibly correlated variables may be analyzed. Both
reliable and easily interpretable new estimators have been proposed in this
category. In this work we will particularly focus on LASSO estimators that
can simultaneously perform coefficient estimation and variable selection.

Other ideas to bypass high dimensionality issues when using regression meth-
ods is to use dimensionality reduction methods. In genetics it is common that
a phenotypic trait can be due to the agglomeration of a large number of little
contributions brought by a wide set of genetic markers. As each variable can
have its own importance to explain the outcome, the simple selection of a set
of variables to fit a chosen model will not capture the global variability of the
data. Not to mention that it will be a difficult task to compose the reduced
set of variables as we do not really known which variables are relevant. Dimen-
sionality reduction methods propose to create new components from a set of
variables by transforming the data in the high-dimensional space to a space of
fewer dimensions.

Finally, in order to take into account complex data structure, machine learning
approaches can be useful in high dimensional context. They can be used to
consider complex relationships between variables and we will finish this section
with a presentation of few machine learning approaches.

2.2.1 Shrinkage methods
In genetics, it is usually suspected that the phenotypic trait is only related
to a subset of p genetic markers. In this case, we suppose that the coefficient
vector β∗ is sparse, with only a small number of coefficients β∗j , j ∈ {1 . . . p}
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not equal to zero. Searching for associated markers can thus be viewed as a
variable selection problem. In the context of high dimensional data sets, the
use of traditional selection algorithms is limited when p becomes too large.
New estimators dealing with high dimensionality issues, as penalized regres-
sion, have since been proposed and outperformed traditional algorithms in
term of predictions. In a comparative study, Ayers and Cordell [2010] exam-
ine the performance of a variety of penalized regressions in selecting SNPs as
predictors in GWAS with standard single locus analysis and simple forward
stepwise regression. They concluded that variable selection techniques based
on penalized regressions outperform single-SNP analysis and stepwise selection.

In this section we will present the LASSO [Tibshirani, 1996] along with the
Group LASSO [Yuan and Lin, 2006] both allowing to create sparse models by
simultaneously estimating coefficients and selecting predictors.

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) proposed by
Tibshirani [1996] is a constrained version of ordinary last squares. The ap-
proach is based on the addition of a penalty on the sum of the absolute values
of the coefficients known as L1 norm, ||β||1 = ∑p

j=1 |βj|. The L1 penalty al-
lows the LASSO to yield sparse solution vectors by shrinking to zero some
of the coefficients and so to perform estimation of the coefficients and vari-
able selection at the same time. The L1 norm is the smallest norm for convex
problems that yields a sparse solution [Hastie et al., 2015]. Other penalized
regression methods have been developed as the Ridge regression [Hoerl and
Kennard, 1970] which resorts to a L2 penalty. The Ridge regression allows to
compute an unique estimator β̂ when p ≥ n or when the explanatory variables
are highly correlated making the matrix XTX not invertible. However, this
estimator will not allow to realize variable selection as it will usually keep all
model parameters.

We note X a matrix with p variables. The LASSO estimator β̂l1, considering
a penalty parameter λ ≥ 0, can be defined as the solution of the following
optimization problem:

β̂
l1 = argmin

β




n∑

i=1
(yi −Xiβ)2

︸ ︷︷ ︸
phenotype explanation

+ λ
p∑

j=1
|βj|

︸ ︷︷ ︸
parsimony explanation



. (2.17)

The regularization parameter λ controls the model parsimony and determines
the penalization. When λ > 0, the LASSO estimates regression coefficients
and, by potentially setting some coefficients βj to 0, simultaneously selects
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variables. For a large enough λ all coefficients go to 0 and no marker is se-
lected. On the contrary, when using a fairly small λ value, all markers are kept.

The LASSO can be generalized to GLM models with similar properties by pen-
alyzing the negative likelihood with the L1 norm, in that case the optimization
problem is written as:

β̂
l1 = argmin

β




n∑

i=1
−logL(yi; Xiβ) + λ

p∑

j=1
|βj|


. (2.18)

Unlike OLS or Ridge estimators, there is no explicit formula for LASSO estima-
tor as the LASSO penalty is not differentiable. However, efficient algorithms,
as least-angle regression (LARS) algorithm [Efron et al., 2004], are available
for computing the entire path of solutions according to the various possible λ
values.

Cross-Validation

To select a value of λ, cross-validation is mostly used [Shao, 1993]. The ap-
proach allows to choose a λ value that minimize the prediction error of the
estimator β̂l1. To do so, cross-validation randomly partitions the sample data
into K equally sized subsets that will successively be used as validation set.
For each k, the model is fit using the data remaining in the K − 1 subsets and
the mean squared prediction error for the subset k is computed as followed:

MSEk = 1
|Γk|

∑

i∈Γk

(ŷi − yi)2,

where ŷi corresponds to the estimation obtained for the subjects belonging to
the removed subset k, noted as the ensemble Γk. The cross-validation prediction
error, is estimated by the average of the K MSE:

CV = 1
K

K∑

k=1
MSEk

When K = n, the cross-validation corresponds to the leave-one-out where each
value yi is simultaneously used as validation set.

The optimal λ, noted λ̂, is chosen as the one that minimize the cross-validation
prediction error for different models that used a λ among a set of possible values
(λ1, ..., λm):

λ̂ = argmin
λ∈(λ1,...,λm)

CV (λ)
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If the LASSO can be applied in a context where p > n it would be limited
in the sense that no more than n variables could be selected by the proce-
dure. The LASSO will then be adequate if there is a parsimonious assumption
among the data, that means if we suppose that only a small set of predic-
tors have a real influence on the outcome. Another limit is that the LASSO
is based on the hypothesis of low dependency between explanatory variables
and does not perform well with highly structured variables. If there is a group
of correlated variables, the LASSO will tend to select only one variable or a
few of them from the group. In the context of genetic data, where the markers
are supposed to be structurally grouped due to biological phenomenon such
as linkage disequilibrium or epistasis, this issue may restrict the use of the
LASSO and make the estimators not convenient in its initial form. In this
perspective, LASSO methods have been extended with the use of structuring
penalties, as Group LASSO, that allow considering preconceived knowledge
regarding markers connection.

Group LASSO

Yuan and Lin [2006] introduced the Group LASSO penalty which allows to
take into account the group structure of data. This penalty is an in-between
the L1 and L2 penalties. In group LASSO, an L2 norm of the coefficients as-
sociated with each group of variables is used. Thus, this procedure acts like
the LASSO but at the group level: depending on the penalty coefficient λ, an
entire group of predictors may drop out of the model. All the variables that
belong to the same group are all equal or all different from zero. This allows to
realize group variable selection. The importance of the penalization depends
on the parameter λ. As for the LASSO, the value of the parameter lambda
to retain is the one that minimizes the prediction error and is determined by
cross-validation.

We note X a matrix with p variables belonging in G blocks of respective lengths
p1, p2, . . . , pg with

∑G
g=1 pg = p. Group LASSO estimator β̂group [Yuan and Lin,

2006] is defined, for a λ ≥ 0, as the solution of the following optimization
problem:

β̂
group = argmin

β




n∑

i=1
(yi −Xiβ)2 + λ

G∑

g=1

√
pg||βg||2


 (2.19)

where βg is a pg vector of regression coefficients belonging to the group g with
β = (β1, . . .βG).

As for the LASSO, the Group LASSO estimator is fitted with an algorithm
and does not have an explicit formula. In order to use Group LASSO with
binary data, Meier et al. [2008] have proposed the Group LASSO for logistic
regression. They propose an efficient algorithm suitable in the case of high
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dimensional data set that can be applied to generalized linear models allowing
to find β̂group that respond to the optimization problem:

β̂
group = argmin

β




n∑

i=1
−logL(yi; Xiβ) + λ

G∑

g=1

√
pg||βg||2


.

Another limit of the LASSO method lies in the interpretation of the respective
roles of the remaining variables. One property of LASSO is that asymptotically
the probability that the support resulting of the regression Ŝ contains the real
support S∗ is close to one. However the number of variables contained in the
regression support can be very large in comparison with the real one [Huang
et al., 2012].

P (S∗ ⊂ Ŝ) −→
n→+∞

1 but |Ŝ| � |S∗|

As it is not possible to directly compute p-values or confidence intervals for
LASSO estimators, it is difficult to distinguish the variables that have a real
explanatory role.

Penalized regression has been used in the context of genetic data providing
new results with sometimes adaptation of the presented method. One example
is the Supervised Group LASSO proposed by Ma et al. [2007] that takes into
account the cluster structure in gene expression data. The proposed approach
consists of two steps. Important genes within each cluster are first selected
using the LASSO and, in a second step, important clusters are selected using
Group LASSO. By realizing selection at both the gene and the cluster scale,
this approach thus allows to handle the presence of large cluster.

2.2.2 Methods using transformed variable input
Dimensionality reduction methods propose to reduce the dimensionality by
projecting the data to a lower dimensional subspace. The projection is realized
on a set of new components obtained by transforming the original data in a
space of fewer dimensions. The data transformation can be based on various
criteria giving the root of diverse methods that we will now present.

Principal Component Analysis and regression

Considering a group of p variables Xn,p, Principal Component Analysis (PCA)
is a statistical procedure that allows to transform a set of correlated variables
as X into a set of uncorrelated artificial new variables Tn,p, called principal
components, by using an orthogonal transformation of the data. Those prin-
cipal components are ordered depending of the amount of the total variance
they represent with the first few ones retaining generally most of the variation
present in the original data set. To transcribe the best explanation of X, we
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search components that will maximize the variance of the data with the follow-
ing orthogonal transformation, T = XW where W is a p×p matrix of loading
vectors. We usually consider to work on the centered and standardized matrix
X in order to center the cloud of data on the origin and to assign equal weights
to all the variables. As WWT = I, the original matrix X can be decomposed
as X = TWT . Each component s can be noted as

ts = Xws = w1
sX1 + w2

sX2 + · · ·+ wpsXp

where ws is a p-vector that maximizes the variance of a linear combination of
the original predictor variables under the norm constraint ‖ws‖ = 1

ws = argmax
‖ws‖=1

Var(Xws) = argmax
‖ws‖=1

wT
s XTXws. (2.20)

For each s > 1, orthogonality constraints are added ensuring to construct
uncorrelated components. For each ws, the result of this optimization problem
gives as solution

XTXws = λsws , s = 1, . . . , p.

where λs are the eigenvalues of the p × p covariance matrix XTX with ws

the associated eigenvectors. As each ws is chosen to have an unit length with
the norm constraint ‖ws‖ = 1, λs will directly correspond to the variance of
ts. The first component t1 will be constructed using the eigenvector associated
with the largest eigenvalue λ1, t2 using the eigenvector associated with the sec-
ond largest eigenvalue λ2 and so on until the last component tp. Subsequently,
each succeeding component will have the highest variance possible under an
orthogonality constraint with the preceding ones.

PCA is frequently used as a way to reduce the dimensionality of a given data
set Xn,p composed of p variables by only reckoned on the k (k < p) first com-
ponents Tn,k that represent the original set of variables in a lower dimensional
space. The value k may be chosen using various criteria as ensuring that the k
components illustrate a certain amount of the total variance of X. The result-
ing set of k components constructs with PCA can then be use as new predictors
in a regression model as a solution to high dimensionality issues.

y = β0 +
k∑

j=1
βjtj + ε (2.21)

The orthogonality of the components allows to eliminate possible multicol-
inearity problem among the original set of variables X. This approach that
combined both PCA and regression is called Principal Components Regres-
sion (PCR) and is particularly compelling when there are strong correlations
between different explanatory variables or a group structure among the data.
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Partial Least Square

If PCA finds components that describe as much as possible of the variation in
X, the response y is not considered in the construction process. Therefore, if
there is a lot of variation in X that is not correlated with the response it is
possible that the component might not be adequate to describe y. Moreover,
useful predictive information for y may be discarded as noise when construct-
ing those components.

Partial Least Square (PLS) also constructs a set of new linear combinations of
the original variables to use in a regression model but, unlike PCA, PLS identi-
fies these new features in a supervised way by using the outcomes Yn,q (which
can be multidimensional with q ≥ 1) in addition to Xn,p. Specifically, PLS re-
gression searches for a set of orthogonal components (called latent variables) by
performing a simultaneous decomposition of X and Y with the constraint that
these latent variables explain as much as possible of the covariance between X
and Y. The decomposition of X and Y can be presented as:

X = TPT

Y = UQT

where T, U are respectively the latent variables and P, Q respectively the
loading matrix of X and Y. The latent variables T are linear combination
of the original predictor variables such as T = XW with W a matrix of
loading vectors. Those loading vectors are calculated in order to maximize the
covariance between the latent variables T and U under the norm constraints
‖w1‖ = 1, ‖q1‖ = 1 and the orthogonality constraint ti ⊥ tj ∀i 6= j.
We can notice the difference between W in PLS and in PCA. For both PLS
and PCA W defines the transformation of X to components T. However in
PCA W reflects the variance structure of X whereas in PLS W reflects the
covariance structure of X and Y.

The first pair of vectors w1, q1 is obtained following the following optimization
criterion with both centered and standardized X and Y:

(w1,q1) = argmax
‖w1‖=‖q1‖=1

Cov(t1,u1) = argmax
‖w1‖=‖q1‖=1

Cov(Xw1,Yq1)

= argmax
‖w1‖=‖q1‖=1

wT
1 XTYq1

When the latent vectors t1 is found, we compute p1 the vector of regression co-
efficients between t1 and X and q1 the vector of regression coefficients between
t1 and Y as:

p1 = XT t1

tT1 t1

q1 = YT t1

tT1 t1
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The data matrix X and Y are then deflated, which means that the information
related to the latent variable t1 is subtracted from the data matrices X and
Y as:

Xd = X− t1pT1
Yd = Y − t1qT1

With Xd and Yd the deflated matrices. The estimation of the next component
is calculated using the same procedure starting from Xd and Yd and so on
until the last component tk. After every iteration, vectors w, t, p and q are
saved as columns in matrices W,T,P and Q, respectively. Different algorithms
can be used for calculating a PLS model, as NIPALS, SIMPLS or the kernel
algorithm.
Finally, we can regress Y on T using the following model:

Y = β0 + TQ + ε = β0 +
k∑

j=1
qjtj + ε (2.22)

In PLS, the latent variables are simultaneously calculated as the partial re-
gression are executed which give a better predictive power to the method in
comparison with PCR.
We can remark that the criterion to optimize with PLS is a compromise be-
tween the ACP and CCA criteria:

Cov(Xws,Yqs) = Cor(Xws,Yqs)
CCA

√
Var(Xws)
PCA of X

√
Var(Yqs)
PCA of Y

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) aims to investigate the presence of re-
lations between two groups of quantitative variables respectively noted Xn,p

and Yn,q with q ≤ p. The method consists in finding q couples of variables
presented in the matrices Un,q and Vn,q of maximal correlation where U and
V are respectively a linear combination of X and Y.
These new sets of variables can be decomposed as:

U = XW

V = YQ
with Wp,q, Qq,q the matrices of loading vectors. As q ≤ p only q couples of
variables can be constructed with CCA.
Each step s will consist in finding the couple of vectors (ws,qs) (and then the
couple of variables (us,vs)) of maximal correlation and uncorrelated with the
previous couples:

(ws,qs) = argmax Cor(us,vs) = argmax Cov(us,vs)√
Var(us)

√
Var(vs)
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By setting the constraint Var(u) = Var(v) = 1 we obtain the following opti-
mization problem :

(ws,qs) = argmax
Var(u)=Var(v)=1

Cov(us,vs) = argmax
Var(u)=Var(v)=1

Cov(Xws,Yqs)

= argmax
Var(u)=Var(v)=1

wT
s XTYqs

The result of this optimization problem gives as solution:

(XTX)−1XTY(YTY)−1YTXws = λ2ws (2.23)
with ws the eigenvectors corresponding to the maximal eigenvalue λ2. λ2 cor-
responds to the canonical correlation coefficient of us and vs. Knowing ws we

are able to determine qs as qs = (YTY)−1YTX
λ

ws and then the couple (us,
vs).
The s-th pair of canonical variables is the pair of linear combinations us and
vs having unit variances, which maximizes the correlation among all choices
that are uncorrelated with the previous s− 1 canonical variable pairs.

2.2.3 Machine Learning
Machine learning is an ensemble of methods designed to model complex re-
lationships between variables and to detect patterns in data without always
specifying a particular genetic model. In genetics, these methods can show
advantages for taking into account relationship and structure. A learner is a
ML algorithm that has been trained to make the best possible prediction on
new data. In this section we will present some machine learning approaches
frequently used in genetic as ensemble learning approaches, support vector
machines and neural networks.

Ensemble Learning

Ensemble learning methods are a set of approaches that combine a set of
models in order to improve their global performance. Starting from a weak
learner which has a performance that is only slightly better than random,
usually a classifier or a regression function, they use repeatedly the weak learner
on various versions of a data set and combine an overall final prediction by
using a weighted vote of the predictions obtained on the multiple estimated
models.

Tree based methods Tree-based methods as regression tree (CART) [Breiman
et al., 1984] are often used as base learners. Tree-based methods seek to con-
struct partitions from a set of individuals by splitting their predictor space
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using a recursive algorithm. The segmenting criterion at each node consists in
minimizing the variance or the heterogeneity intra-class of the two new con-
structed regions until a stopping criterion is reached. The prediction of a single
observation will be obtained by considering the mean (or the mode for binary
outcome) of the observations belonging in the same region. Tree-based meth-
ods are simple and useful for interpretation but, when they are considered as a
single model, are not competitive with the best supervised learning approaches
in terms of prediction accuracy and stability. If the data change a little, the tree
picture can be very different. Working on aggregating trees will allow to avoid
these problems. By producing multiple trees which are then combined in order
to obtain a single prediction, tree aggregation will lead to wide improvements
in prediction accuracy, at the expense of some loss in interpretation.

Bagging and Random Forests In the late 1990’s, Breiman [1996] proposed
the bagging approach (short for bootstrap aggregating) that aggregates tree
results obtained on B bootstrap samples of the original data set. The boot-
strap, introduced by Efron [1979], consists to draw sample sets of the same size
than the original data set by performing an uniform sampling with replace-
ment. Thereby, some observations may be repeated in each sample sets. This
approach allows to obtain a set of simulated samples having the same distri-
bution as the real data making the bootstrap particularly useful in absence of
any information about the distribution. In bagging, the idea is then to consider
B bootstrap samples from the data and to fit a tree on each of these sample.
Predictions are obtained by averaging the B trees results for regression or by
assigning class per majority votes for classification. In 2001, Breiman proposed
Random Forests as a special version of bagging that uses a small tweak allow-
ing to create decorrelated trees [Breiman, 2001]. As in bagging, B trees are
built on bootstrapped samples. But when building these trees, each time a
split in a tree is considered, a random sample of m predictors is chosen as split
candidates from the full set of p predictors. The split is allowed to use only
one of those m predictors. Usually, we choose m = √p for categorical outcome
and m = p

3 for continuous outcome. Predictions are then obtained using the
same idea as in bagging.

Boosting Another method to generate an ensemble learning is boosting [Fre-
und, 1995], which works as an ensemble method in a similar way as bagging
by combining the results of a set of training models. Here, each base learner is
constructed using a weighted version of the data, with the weights depending
on the results of the previous base learner. Thus, while bagging simultaneously
trains separate models on bootstrap samples before averaging their prediction,
Boosting, in another way, works iteratively. At each step, it uses information
brought by the previous iteration to train the model and consider as a final re-
sult a weighted combination of all trained model. At each iteration the weight
coefficients depend on the performance of the previous models, and are read-
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justed in order to give more weights to misclassified examples allowing the
next models to focus on difficult examples. Boosting is an approach that can
be applied on a large set of statistical methods in order to improve their pre-
dictions results. It was originally designed for solving classification problems,
but can also be extended to regression. For regression problems, boosting is
a form of “functional gradient descent” [Elith et al., 2008]. At each step we
search to minimize a loss function, as the squared error (yi − f(xi))2 in the
case of continuous outcomes, and the weights of each model are updated to
minimize that error.

Support Vector Machines

Support Vector Machines (SVM) are a class of supervised learning algorithms
first proposed by Vapnik and colleagues in the late 1970 [Vapnik, 1979]. Firstly
designed for classification problems SVM have been then generalized to regres-
sion analysis. Originally SVM are a generalization of maximal margin classi-
fier, a method that consists in finding a hyperplane that separates a dataset
between two perfectly separated classes. Considering the marginM , which cor-
responds to the minimum distance between the hyperplane and the training
observations, the objective is to find a hyperplane with an optimal marge M
that correctly separates the data while being the farthest from the training
observations. However this method is restricted to linear separable cases and
does not apply in many situations. In order to accommodate non-linear class
boundaries, SVM propose an extension of maximal margin classifier by using
kernels. A kernel can be defined as a function K that measures the effect of
a couple (xi,xj) trough its correlation or its distance and then quantifies its
similarity. In the linear case, the kernel K is K(xi,xj) = ∑p

k=1 xikxjk. Common
kernels that allow to consider non-linear transformation include:

dth-Degree polynomial: K(xi,xj) = γ(c+
p∑

k=1
xikxjk)d,

Radial basis: K(xi,xj) = exp(−γ
p∑

k=1
(xik − xjk)2),

with c ∈ N, d ∈ N and γ > 0.

Neural Network

Neural Network are computational models inspired by the way biological neu-
ral networks process information in the human brain. The basic unit in a neural
network is the neuron. In the simplest possible neural network with only one
neuron considered, an output y is computed from a set of inputs x1, . . . , xk us-
ing a defined function f . Weights w1, . . . , wk are assigned to the k inputs and
reflect of their relative importance. The output of the neuron can be written as
y = f(w1x1+· · ·+wkxk) with f a non-linear activation function usually defined
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Figure 2.1: A multi layer perceptron having two hidden layers from
http://griswoldandco.com/

using a piecewise linear function or a sigmoid function, such as the hyperbolic
tangent or the logistic function. Many neurons can be considered in a neural
network, each of them serving as inputs or outputs for other neurons, and are
organized in layers. The input layer represents the initial variables, whereas
the output layer, which often consists of a single neuron, generates an output
signal corresponding to the response variable y. The input layer communicates
with one or more hidden layers that will in turn link to the output layer using
weighted connections. An example of the architecture of a neural network with
two hidden layers is presented in the figure 2.1. The bias inputs correspond to
intercept terms.

2.3 Methods to detect epistasis
Given the challenges of its investigation, epistatis is a topic of great interest
in genetic and has been the subject of a large amount of research in the past
few years. Numerous methods from various theoretical backgrounds have been
proposed and have been reviewed in several papers [Niel et al., 2015; Wei et al.,
2014; Steen, 2012; Hu et al., 2014; Shang et al., 2011; Cordell, 2009; An et al.,
2009]. Given the huge number and the diversity of the methods it is difficult
to categorize the methodologies used. Various criteria have been used in the
previously mentioned reviews with several overlaps between the different clas-
sification schemes. In this section we will only present some of the approaches
developed to detect epistasis following the classification presented in the Fig-
ures 2.2 and 2.3. We will first introduce the type of epistasis investigation that
can be conducted (exhaustive or filtering) before focusing on methods designed

http://griswoldandco.com/artificial-neural-networks-and-deep-learning-the-true-key-to-artificial-intelligence/
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to detect single-locus interactions methods and ending with methods that have
been proposed at the group level.

2.3.1 Exhaustive or filtering based investigation
The first issue that arises when investigating for epistasis effects in GWAS is
dealing with the high dimensional context. For example, for a GWAS including
one million of SNPs, 5 × 1011 pairwise interactions have to be investigated.
Two types of strategies can be conducted in this context, an hypothesis-free
approach where all pairs of markers are exhaustively investigated for the search
of epistasis or an hypothesis-driven approach where the search is restricted to
specific subset of genetic markers selected according to some prior filtering
hypothesis [Wei et al., 2014].

Exhaustive search

A first idea to detect interactions between a couple of genetic markers may
be to resort to a parametric model in a similar approach than the one used
to detect single association in GWAS. Thus, in the context of the detection of
epistasis effects the model should be:

g(E[y|x]) = β0 + β1x1 + β2x2 + β3x1x2. (2.24)

The test for interaction is then based on the coefficient β3 with g() the link
function defined depending of the phenotype distribution. Software as PLINK
[Purcell et al., 2007] propose this type of model to detect interactions in GWAS.
A specific set of SNPs can be selected by the user but otherwise all pairwise
combinations of SNPs can be tested. In all cases, p-values obtained with this
strategy will have to be corrected using a multiple correction procedure in or-
der to prevent the presence of a too large number of false positives as many
significant results will be generated. Using such a parametric model to detect
interactions will however pose several limits. First, the huge number of tests
to perform if all pairwise interactions have to be considered will generate a
considerable computational burden and will be time consuming. Second, only
interactions with very strong effect will be able to pass the multiple test thresh-
old and thus be detected under this framework. Finally, this type of model does
not allow to consider the global structure of genetic data as only two markers
are considered in each model. Using an unique model that contains all main
and interaction effects will however not be reliable given the high dimensional
context. Besides the initial parametric framework proposed in PLINK and de-
spite the methodological difficulties, other exhaustive approaches have been
developed to investigate epistasis in the whole genome and will be presented
in the section dedicated to SNP-SNP approaches.
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Filtering based search

In order to limit the computational burden issue of exhaustive investigation,
a strategy is to limit the analysis to a reduced number of genetic markers
before testing for interaction. Various filtering approaches may be used in
this way [Sun et al., 2014]. Common filtering steps are based on statistical
results, biological knowledge or knowledge extracted from the dataset using
data mining and data integration techniques.

• Statistical filtering: Filtering based on statistical results includes the
ideas to keep only SNPs with significant marginal effects or regarding
SNP genotype frequencies [Ackermann and Beyer, 2012]. Choosing SNPs
under the assumption that they present significant main effects follows
the concept of strong heredity [Chipman, 1996]. This principle stipulates
that both predictors of a significant interaction should be marginally
significant. Several two step methods based on this type of filtering have
been proposed [Kooperberg and LeBlanc, 2008; Wu et al., 2009; Evans
et al., 2006; Marchini et al., 2005] and show good power. However filtering
SNPs on the basis of the presence of their main effect will bias the analysis
by only considered one type of interaction. SNPs that are associated to
the phenotype of interest solely by their interaction effects will not be
retained in the analysis. In order to capture the effects of SNPs that do
not necessarily manifest main effect but may interact with other SNPs
in an epistasis network, other filtering approaches built on the relaxed
assumption of weak heredity, where only one effect has to be marginally
significant, have been proposed [Bien et al., 2013; Gao et al., 2013; Li
et al., 2014].

• Biological knowledge filtering: A second filtering approach consists
to use biological knowledge as for example, resorting to SNPs belong-
ing to a same pathway or encoding for particular proteins that are in-
volved in relevant interaction. In the latter case, information regarding
protein-protein interactions can be found using online database like In-
tAct [Kerrien et al., 2012], BioGRID [Chatr-Aryamontri et al., 2015] or
STRING [Franceschini et al., 2013]. Public databases allowing to retrieve
information about genes and thus SNPs involving in specific pathway are
also available like KEGG [Kanehisa et al., 2012], BioCarta [Nishimura,
2001] or Reactome [Fabregat et al., 2016]. We can also cite the software
program Biofilter [Bush et al., 2009] that catalogs biological information
by integrating data from multiple databases. Filtering using biological
knowledge may be a good strategy to improve the inference of biological
epistasis from statistical interaction results and will also have the ad-
vantage to be easily interpretable. Several studies successfully identified
interactions using this type of filter [Ma et al., 2012; Turner et al., 2011b]
however as the previous filtering approach, filtering SNPs under biolog-
ical assumption will bias the analysis. Only interactions between SNPs
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for which biological knowledge is established will be analyzed, thus pre-
venting the detection of novel interactions [Ritchie, 2011]. Furthermore,
online databases are not complete and the understanding of biological
pathways limited. Certain pathways are more intensely investigated than
others which can bias the choice of the SNPs to analyze.

• Data mining filtering: A third strategy consists in selected SNPs using
data mining techniques such as Relief algorithms. The first version of
these algorithms was proposed by Kira and Rendell [1992] and has now
been extended to several variants. Relief algorithms are nearest neighbor
based approaches that compute a proximity measure between individuals
on the basis of their genetic similarity. The power of each SNP to select
is evaluated according to their capacities to distinguish between close
individuals. Among the algorithms that have been proposed we can cite,
ReliefF [Kononenko, 1994], Tuned ReliefF (TuRF) [Moore and White,
2007] or Spatially Uniform ReliefF (SURF) [Greene et al., 2009].

2.3.2 SNP - SNP interactions detecting methods
Single-locus is the most common level at which interactions are considered and
a large number of approaches have been proposed using various methodologies.
In this section we will present a sample of these methods. We chose to classify
these methods in the following way. First we will introduce the regression based
approaches, which may be exhaustive or filter based. Then, the methods based
on an interaction test that evaluates the difference between case and control
regarding criteria such as linkage disequilibrium or odds ratio will be presented.
We then consider methods based on machine learning or data mining and we
will eventually mention other families of methods such as entropy or bayesian
modeling. This classification of single locus interaction detecting methods is
illustrated in the Figure 2.2 that presents for each category a non exhaustive
list of corresponding methods.

Regression based methods

Generalized linear model is a common framework to investigate epistasis. Lo-
gistic models are commonly used as many studies have case control designs.
Typically, a model is defined for each couple of genetic markers and the interac-
tion effect is assessed using a likelihood ratio test. However this framework can
only consider one interaction at the time and will be confronted to computa-
tional and statistical burdens if a too large number of variants are considered.
Therefore filtering on significant main effect [Kooperberg and LeBlanc, 2008] or
on biological information [Emily et al., 2009] is usually first conducted. Other
authors proposed to resort to penalized regression in order to consider multi-
ple genetic markers and their interactions in a single model. Commonly a L1
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penalty (LASSO) is used in the penalized model as it allows to jointly perform
estimation and variable selection but several authors also propose to resort to
a L2 penalty (Ridge) combined to a variable selection procedure that allows
to take into account colinearity among variables. Penalized methods also need
to use a preliminary filtering step as a penalized regression model loses rele-
vance when confronted to a too large number of variables. Besides traditional
filtering strategies several authors [Gao et al., 2013; Li et al., 2014] proposed
to select SNPs following a weak hierarchical assumption (in which only one
predictor of a pairwize interaction needs to be marginally significant) which
allows to capture epistasis effects for the SNPs that only contribute to the
phenotypic trait through their combination with other genetic markers. Thus,
a first step aims at identifying SNPs with significant marginal effects and later
test them for possible interaction with all other genetic markers either they
show marginal effect or not. However, other authors are more prudent with the
weak hierarchical assumption and prefer to consider only SNPs showing main
effects [Zhu et al., 2014]. Other methods chose to use their own filtering strat-
egy as SNPHarvester [Yang et al., 2009a] that develops a PathSeeker algorithm
that aims to identify disease-associated SNP groups in which SNP interactions
are latter investigated using Ridge regression and variable selection. Logic re-
gression is also used in the context of epistasis investigation [Schwender and
Ickstadt, 2008; Kooperberg and Ruczinski, 2005]. In this framerwork, sets of
variables are converted into Boolean expressions before being introduced in a
regression model. These Boolean expressions can be represented as trees and
are defined using classification rules.

Regarding exhaustive approaches, besides the initial parametric framework
proposed in PLINK [Purcell et al., 2007] that we described previously, other
methods have been developed to investigate epistasis in the whole genome.
These approaches resort to different strategies in order to avoid as much as
possible computational issues. For example, a bitwise computing in which SNP
data are first transformed in a bitwise structure will allow a better memory
efficiency and a better computing speed. This strategy has been used in ap-
proaches such as BOOST [Wan et al., 2010a] and BiForce [Gyenesei et al.,
2012]. Other strategies consist in resorting to multiple processing cores unit
as GPGPU (General-Purpose computation on Graphics Processing Units) or
parallel computing that will both allow to accelerated computational perfor-
mance and thus reduce the computational burden of a genome wide epistasis
investigation.

Case-control contrast tests

Interaction between two genetic markers can be investigated using case con-
trol contrast tests. The methods that we present here are either based on a
difference test between cases and controls in linkage disequilibrium (LD) or in
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odds ratio.

Two unlinked markers in a population will present linkage equilibrium if they
are independent. However, the existence of an interaction effect between two
unlinked markers will lead to a non independence of the two markers in the
disease population and will in turn create linkage disequilibrium. Following
this idea Zhao et al. [2006] developed a test for interaction between unlinked
markers based on the difference in LD between cases and controls. Others
methods based on the same concept have later been proposed [Wu et al., 2008;
Yang et al., 2009b], with some, as SIXPAC [Prabhu and Pe’er, 2012] or iLOCi
[Piriyapongsa et al., 2012], designed to realize an exhaustive investigation of
interactions.

Among the methods based on the difference in odds ratio we can cite the ex-
haustive fast epistasis option that has been implemented in PLINK [Purcell
et al., 2007] in order to screen for epistasis in a faster way. Other methods based
on this framework have been developed, for example, Wu et al. [2010c] pro-
posed a pathway based genome wide interaction analysis with a new measure
of interaction based on pseudohaplotype odds ratio. Latter, Ueki and Cordell
[2012] investigated this method just as the fast epistasis option and proposed
adjusted version of the statistics as well as two new statistical tests. Emily
[2012] proposed an independence-based odds ratio (IndOR) statistic that re-
lies on a biological definition of epistasis. They define epistasis as a variation in
the level of dependency between two genetic markers and resort to odds ratio
to evaluate this variation between cases and controls.

Machine Learning and data mining

An important number of methods based on machine learning or data mining
have also been investigated as reviewed by Koo et al. [2013], Upstill-Goddard
et al. [2012] or McKinney et al. [2006] Theoretical concept of some commonly
used machine learning approaches are detailed in the section 2.2.3. Using this
family of methods, a larger type of data structures can be modeled. Interaction
terms for modeling data are not explicitly defined and the epistatic effect is
most of the time tested implicitly by examining the combination effect simul-
taneously.

A popular data mining approach is the Multifactor Dimensionality Reduction
(MDR) [Ritchie et al., 2001]. For a given set of genetic markers, n SNPs are
selected. The possible multifactor combinations of these n markers are repre-
sented in cells in n-dimensional space and each cell is assigned a case-control
ratio. Each multifactor cell is labelled as "high risk" if the case-control ratio
exceeds some threshold and "low risk" otherwise. This classification allows to
reduce the dimensionality of the predictors to one dimension. The new one-
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dimensional variable is then evaluated for its ability to classify and predict
disease status. The procedure is repeated for each possible n markers com-
bination and the optimal n combination is chosen using cross-validation and
permutation testing. A best model is chosen for each value of n. From the set
of best models, the model which minimizes the prediction error and/or maxi-
mizes the cross-validation consistency is selected. MDR is now a reference in
the epistasis detection field and multiple extensions have been proposed as
reviewed by Gola et al. [2016]. For example, to make the method applicable to
continuous outcome [Gui et al., 2013] or to boost the computing time perfor-
mance with parallel implementation [Bush et al., 2006] or graphics processing
unit [Zhu et al., 2013; Greene et al., 2010]. Others extensions are presented in
Figure 2.2.

When using machine learning predictors or classifiers, the detection of epista-
sis can be considered as finding the best combination of SNPs from a given
dataset which can produce the highest prediction accuracy [Chen et al., 2008].
Pattern recognition methods such as Support Vector Machines (SVM) or Neu-
ral Networks (NN) have been used in this context. Thus Shen et al. [2010]
proposed a two stage method to detect gene-gene interactions that first uses a
model selection method SVM with L1 penalty to identify promising SNPs and
interaction effects and then calculate the p-values associated using a logistic
regression method. Chen et al. [2008] apply SVM with various kinds of combi-
natorial optimization methods to detect interactions. Regarding NN, one way
to identify interactions is to use two-SNP NN models in which two locus are
used as input. The best neural network model is chosen using an optimiza-
tion criteria [Turner et al., 2010]. One particular challenge when using NN is
the designation of an appropriate NN architecture and the use of classical NN
based on backpropagation algorithms have shown variable success in genetic
epidemiology [Motsinger-Reif et al., 2008]. In this context, machine learning
algorithms such as genetic programming or grammatical evolution have been
proposed to optimize NN architecture and have been used by several authors
in order to detect non linear interactions among genetic markers. Thus Ritchie
et al. [2003] develop the Genetic Programming Neural Network (GPNN) that
resorts to genetic programming in order to optimises both the inputs and the
architecture of NN for a given data set. The authors show that GPNN presents
a better power in comparison with a traditional backpropagation neural net-
work (BPNN). Motsinger-Reif et al. [2008] introduced Grammatical Evolution
Neural Network (GENN) and show that their approach outperformed GPNN.
More recently Turner et al. [2010] proposed ATHENA, a new tool that proposes
several fundamental modifications to usual NN. The different strategies eval-
uated by the authors was to resort to an alternative tree-based GE crossover
strategy, to use an hybrid backpropagation-GENN training algorithm and fi-
nally to determine if the incorporation of biological knowledge from external
sources such as Biofilter [Bush et al., 2009] would increase performances. They
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show that the three strategies increases performance of NN in detecting and
modeling epistasis.

Random Forest (RF) can also be used to capture interactions between SNPs.
RF allows for interactions between SNPs as it builds paths departing from
the root of a tree through various nodes. A path can then be perceived as
a sequence of predictor variables that includes potential interactions between
them [Schwarz et al., 2010]. Thus, RF can detect associated SNPs from a set of
genetic markers while implicitly taking into account the effects of interactions
among them. RFs give variable importance measures (VIM) for each predictor
that can be used to rank SNPs. These measures can be used to filter SNPs to
investigate for interactions. However, Winham et al. [2012] explored the ability
of VIMs to capture interaction effects and shown that these measure can fail
to detect interaction effects in high-dimensional data sets and that the use of
RF may be limited in the context of epistasis detection. Among the methods
that have been proposed to detect interaction we can cite the software Ran-
dom Jungle [Schwarz et al., 2010] which is a fast implementation of RF. More
recently, Li et al. [2016] proposed to detect pure interactions between SNPs
using permuted random forest (pRF). The method identifies top interacting
SNP pairs by estimating how much power the pairwise interactions influence
a random forest classification model. A more complete list of methods based
on either Trees or RF can be found in Figure 2.2 as well as other machine
learning approaches.

Other existing family of approaches

The different types of approaches that we have presented through this section
are not exhaustive of all the family of methods that have been proposed to
investigate epistasis in GWAS. Methods based on distinct foundations such as
entropy or Bayesian modeling have also been developed in the past few years.
However these families of methods exceed the interests of this manuscript and
will not be further investigated. Several references of methods based on these
two families can be found in Figure 2.2 and more information regarding entropy
based methods can be found in the systematic review recently published by
Ferrario and König [2016].

2.3.3 Groups interaction detecting methods
In Section 2.1.3 we presented the advantages to resort to a group based anal-
ysis in order to detect associations in GWAS along with several corresponding
SNP set based approaches. As a reminder, this type of analysis presents the
advantages to simplify the multiple testing problem, to present a better statis-
tical power while allowing to take into account the correlation structure among
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SNPs. A group approach analysis can also be used in the context of epista-
sis investigation. As in group association analysis, SNP sets to investigate for
epistasis can be defined in various ways, for example using genes or haplotype
blocks definition, but most of the methods like to resort to gene as grouping
unit as they may be easier to define and should allow to obtain more biologi-
cally interpretable results.

Even if interactions between individual markers is the most investigated strat-
egy, several gene-gene methods have been proposed as presented in Figure 2.3.
Some existing approaches proposed at the SNP level have been extended in
order to be able to consider sets of markers. For example Li et al. [2015] pro-
posed a Gene Based Information Gain Model (GBIGM) as an extension of
entropy based method, while Oh et al. [2012] extended the popular data min-
ing approach, Multifactor Dimensionality Reduction (MDR) to detect gene
interaction. Overall, most of the gene-gene based approaches adhere to one
of the following strategies: some authors proposed to use a test at the gene
level after aggregating SNP-SNP interaction tests, other proposed to use mul-
tidimensional approaches on the sets of genetic markers and either directly to
define a test at the gene level or to resort to a regression model that incorpo-
rates summarizing variables.

Gene level interaction tests defined outside a regression framework

One strategy to investigate gene-gene interaction consists in aggregating into
a gene level test the p-values that have been obtained at the SNP-SNP level.
Among the methods that allow to combine the p-values of the SNPs within a
gene we can cite: the truncated product method (tProd) [Zaykin et al., 2002]
that removed p-values larger than a defined cutoff from consideration. The
truncated tail strength test statistic (tTS) [Jiang et al., 2011] that follow the
same idea. Li et al. [2011b] proposed GATES as an extended Simes test and Liu
et al. [2010] proposed a minimum p-value test (minP) in the program VEGAS
(versatile gene-based association study). Ma et al. [2013] used these four dif-
ferent methods to aggregate all pairwise p-values obtained for a couple of gene
in a single interaction test and proposed four new gene-based gene-gene inter-
action (GGG) tests. In the same way, [Emily, 2016] proposed A Gene-based
GEne-Gene interActTiOn test (AGGrEGATOr) based on a minP procedure.

Using another framework Rajapakse et al. [2012] developed the Composite
Linkage Disequilibrium method (CLD) which is a gene-based test of interac-
tions for case-control studies that takes into account the LD information by
using a test based on the comparison of the covariance structure between cases
and controls.

Other gene-based tests that focus on the difference between cases and con-
trols have been developed. In this fashion, Peng et al. [2010] used a canonical
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correlation-based U-statistic model (CCU) to detect co-association in case-
control studies. The concept of co-association refers to the joint effect of two
genes in the contribution to a trait. More precisely it refers to the extent to
which this joint effect differs from the main effects of each gene on a trait. In
co-association, this difference is not only due to the presence of interactions but
also depends of the correlation between the genes and co-association is mea-
sured using correlation based approaches. For example, in CCU, the idea is to
test for two given genes the difference between canonical correlation coefficient
computed by Canonical Correlation Analysis (CCA) among cases and among
controls. Their work was subsequently extended by Yuan et al. [2012] and
Larson et al. [2014] who proposed a new test termed KCCU that is based on
kernel CCA (KCCA) and allows to detect nonlinear correlation between genes.
A robust version of this latter proposition, robust KCCU, was introduced by
Alam et al. [2016]. In 2013, two other methods were proposed in the context
of co-association detection that were not based on CCA. Zhang et al. [2013]
proposed to use a Partial Least Squares Path Modeling approach (PLSPM) to
detect co-association between genes. The test is defined on the standardized
difference between cases and controls of path coefficient obtained using PLSPM
for the gene pair. Yuan et al. [2013] proposed a co-association measure based
on the difference of correlation coefficients between cases and controls for two
genes and used a Fisher r-to-z transformation for testing the difference. Fisher
r-to-z, CCU, KCCU and PLSPM-based statistics were proposed by the same
group of authors that recently developed a novel score-based statistic (SBS)
[Xu et al., 2016] that captures the effect of covariance between two genes and
that presents good performance in comparison with the previous approaches.

Gene level regression based approaches

Regression based approaches resort to a summarizing step to obtain informa-
tion at the gene level. In more recent methods, filters or penalized models are
used to make the method applicable to a large number of genes, while older
methods are only applicable to two or a very limited number of genes. For
the summarizing step, most methods resort to a principal component (PC)
approach, but each method has its specific characteristics.

Chatterjee et al. [2006] harnessed Tukey’s one-degree-of-freedom method to
investigate interaction between two genes. Their method is based on the as-
sumption that the SNPs included in each gene region act as surrogates for
an underlying biological phenotype. The genotypic information for the gene
region is extracted as a single component by a weighted sum of all SNPs. The
weights are determined according to the SNP’s correlation with the trait. The
product of the two sums is then introduced as the gene-gene interaction term
into a logistic model, where marginal effects are represented by the respective
sums. Building on this idea, Wang et al. compared two different interaction
tests [Wang et al., 2009]. On the one hand, they used Principal Component
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Analysis (PCA) to summarize SNP information within a gene, and on the
other hand they used Partial Least Squares (PLS) to extract components that
summarize, first, the information among SNPs in a gene and, second, the cor-
relation between SNPs and the outcome of interest. They then proposed an
interaction test based on either the first PC or the first PLS component for
each gene, and were able to show that the PCA and PLS methods often out-
performed Tukey’s one-degree-of-freedom method. But it is worth noting that
the main objective of these three methods was to improve the detection of
associations in the presence of gene-gene interactions, rather than to identify
the interactions themselves. Other approaches based on principal component
analysis have since been proposed for epistasis detection [He et al., 2011; Li
et al., 2009]. Li et al. [2009] proposed selecting, as the gene representation,
PCs that are able to explain at least 80% of the variation. The PCA based
approach proposed by He et al. [2011] allows to take LD information into
account. LD information is used to weight genotype scores which are then ag-
gregated using principal components. Other methods than PCA or PLS have
been used to summarize genetic information in a gene. For example SimReg
[Wang et al., 2014a] resorts to genetic similarity which, unlike PCA or PLS,
utilizes all information within a gene. For each gene, the multi-marker infor-
mation is summarized using a specific genetic similarity definition between
subjects. The interaction is modeled by taking the product of the genetic sim-
ilarities of the two genes and is then integrated in a regression model. More
recently, Zhao et al. [2016] proposed a Functional Logistic Regression (FLR)
model to detect interaction between two genomic regions. In this approach,
functional data analysis techniques are used to reduce the dimensionality of
the data and interaction between all possible pairs of variants in two regions
are tested using an overall test in a logistic regression model. This model was
also investigated by Zhang et al. [2016] for multivariate quantitative traits in
a new methods termed Multiple Functional Regression (MFRG) model.

These methods have been defined on the consideration of one couple of genes
but they can be used to explore the presence of interactions among a large
number of genes using correction for multiple testing as done by Zhao et al.
[2016] and Zhang et al. [2016]. The idea of considering a multiple number
of genes to examine for interaction was also investigated by different authors
who proposed different filtering based approaches that reduce the gene-gene
search space by eliminating unimportant genes. Li and Cui [2012] proposed a
model-based kernel machine method, termed Gene-centric Gene-Gene interac-
tion with Smoothing-sPline ANOVA (3G-SPA), as a two-step procedures that
first performs a search for gene pairs contributing to the overall phenotypic
variations and then test significant pairs for interaction effects. In this ap-
proach, a smoothing spline-ANOVA decomposition method is used to decom-
pose the main and interaction effects of two genes. The interaction is modeled
by a cross-product of two kernel functions that captures the joint variation
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of SNPs within a gene. The authors explain that the kernel machine method
is mathematically equivalent to a linear mixed effects model, main and in-
teraction effects are evaluated by testing the significance of different variance
components. [Larson and Schaid, 2013] proposed an adaptation of 3G-SPA
applicable to case-control studies. Another attractive alternative is offered by
penalized regression methods that select a subset of important predictors out
of a large number of potential predictors. These methods operate by shrink-
ing the size of the coefficients. The coefficients of predictors with little or no
apparent effect are forced to be set to zero, reducing the effective degrees of
freedom and in many cases making model selection possible. A few approaches
using penalized models have been proposed. D’Angelo et al. [2009] combined
principal component analysis and LASSO penalized regression. Wang et al.
[2014b] used a principal component analysis combined with an L1 penalty,
with adaptive weights based on gene size, pathway support and effect size.

Haplotype-haplotype interaction investigation

Even if investigating epistasis at the haplotype level is a less common approach
due to the issues brought by haplotype reconstruction, several haplotype based
methods have been proposed. Let us cite for example Zhang et al. [2012] who
proposed a method based on stratified contingency tables using a case-control
genetic association design. HAPAL [Li et al., 2010], that resort to a penalized
logistic regression framework with an adaptive LASSO penalty or even Hap-
Forest [Chen et al., 2007], a forest based approach. As last example, we can
also cite BayesGLM a method based on a Bayesian hierarchical generalized
linear model [Li et al., 2011a].





Chapter 3
A novel Group LASSO based approach
to detect epistasis in GWAS

In this chapter we will present a new penalized regression framework aiming
to detect interactions between groups of variables in the context of GWAS. We
will first introduce the general regression model before describing the proposed
approach in more details. Overall the proposed approach is composed of dif-
ferent steps. The first step consists in specifying a grouping of markers. Once
groups are determined, new interaction variables can be defined for each pos-
sible couple and can be introduced in the regression model. The novelty of this
approach lies in the definition of group interactions. We will present several
manners to define those new variables using various statistical approaches. The
last step of the method consist in estimating the coefficients of the regression
model using a Group LASSO penalty.
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3.1 Introduction
We thereafter present new group modeling approaches based on regression
analysis to detect epistasis interaction in GWAS. As presented in the previous
chapter, generalized linear model (GLM) is often used for GWAS: the pheno-
type is considered as a random variable y whose conditional expectation can
be written as a function of covariatesX, usually the matrix of genetic markers.

For who is interested in investigating the presence of interactions between
genetic markers, it is necessary to introduce a new set of variables Z charac-
terizing those interactions and adding them in the GLM model as covariates
as follows:

g(E[y|(X,Z)]) = Xβ +Zγ. (3.1)
In this model, y = (y1, y2, ..., yn)T denotes the vector of trait values for n in-
dividuals with X ∈ Rn×p, the genotype matrix whose columns correspond to
the p SNPs. Xi is then a p-dimensional vector of covariates for observation
i ∈ {1, . . . , n} and for j ∈ {1, . . . , p}. We usually consider an additive coding
scheme in which the genotype value of each SNP j from individual i is denoted
Xij ∈ {1, 2, 3}. Zi is the ith line of the matrix of interactions and γ a param-
eter vector of appropriate dimension.

In the context of a group analysis where SNPs are arranged together following
a chosen aggregation strategy, we are no longer studying markers individually
but as groups. The interaction variables will be then constructed in order to
represent those groups interactions. Going back to the model, we consider the
genetic variants in X as structured in G groups. Each group is described by
a given number of SNPs pg where ∑g pg = p. Xg denotes the submatrix of
X whose columns are the pg SNPs of group g. β is the coefficients vector of
individual markers defined as:

β =


β1,1, β1,2, ..., β1,p1︸ ︷︷ ︸

group1

, ..., βG,1, ..., βG,pG︸ ︷︷ ︸
groupG




T

.

The main effect of each group is modeled through the sum of the effects of all
corresponding SNPs. Concerning interaction effects, we compute new variables
representing interactions between two specific groups. The matrix of interac-
tions is thus structured into G(G− 1)/2 submatrices:

Z = [Z11 · · ·Zrs · · ·ZG(G−1)/2]

where Zrs describes the interactions between the two groups r and s. The
parameter vector γ is accordingly structured into sub-vectors γrs.
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3.2 Groups modeling
As presented in Section 2.1.3, a common strategy to group SNP markers is
to use previous biological knowledge. For a considerable part of genetic mark-
ers, it is possible to obtain information on pathways, haplotypes or genes in
which it can belong and thus, to group together markers that share the same
information. This type of biological information can be obtained using pub-
lic databases. In GWAS grouping SNPs by genes is one of the most common
strategy. In this thesis, we resort to the material provided by the National Cen-
ter for Biotechnology Information (NCBI) in order to obtain gene information
for each genetic marker and we will only retain the SNPs that belong to one
unique gene. Another grouping strategy that would allow to keep a larger num-
ber of SNPs in the analysis would be to use LD block structure as proposed
by Dehman et al. [2015]. This clustering approach uses a LD based distance to
define blocks of strongly correlated genetic markers among the genome. How-
ever, one limit of this type of approaches is that the group structure is less
interpretable than genes. Thus, we will mainly resort to a gene definition to
determine the group structure of our data sets.

3.3 Modeling interactions
Once the groups are defined, the second step will consist to construct interac-
tion variables. We will present some of the various modeling strategies using
genes as groups, but any other grouping definition can be used.

3.3.1 General model
Let us consider two genes r and s described respectively by pr and ps SNPs.
A first idea to represent the interaction between the two genes could be to
consider all possible SNP products of both genes. With this idea, a possible
interaction term describing the epistasis between the two genes could be:

Zrs
i
Tγrs =

pr∑

j=1

ps∑

k=1
γrsjkX

r
ijX

s
ik. (3.2)

We hereafter set F rs = {Xr
ijX

s
ik}j=1,··· ,pr;k=1,··· ,ps

i=1···n , the matrix of all pairwise
SNPs products. In this case the submatrix of interactions is Zrs = F rs and
γrs = {γrsjk} is a vector of size prps. However, this strategy would lead to
the creation of a too extensive number of interaction variables to add in the
model. For example, if we consider that the genes r and s are both composed
of 6 markers, we will expect 36 variables in Zrs . Knowing that the data set
surely contains more than two genes, the number of parameters in the model
would obviously be too large to be reliably estimated. For this reason it is nec-
essary to find other representative definitions that allow to generate a reduced
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number of interaction variables for each couple and thus to reduce the number
of parameters to estimate in the model.

Thereafter we will present different methods to compute interaction variables
while controlling the dimension of Zrs for each couple (r, s).

3.3.2 Interaction variables construction
In order to compute interaction variable matrices of low dimension, we choose
to use and compare different alternatives. The first following propositions are
based on various statistical methodologies as dimensionality reduction methods
or machine learning which have been more widely presented in Section 2.1. The
last one is an original approach that we termed Gene-Gene Eigen-Epistasis.

Principal Component Analysis

Applying PCA on each gene can allow to reduce the number of SNPs to a
fixed number of representative components. Considering gene r described by
pr SNPs, we can compute the matrix Tr

n,q of the first q principal components

Tr = XrWr,

where Wr is a pr × q matrix of loading vectors. Using Tr and Ts instead
of Xr and Xs in the computation of the interaction allows the number of
parameters relative to each interaction to be controlled. This control is achieved
by choosing the number of principal components q. The PCA model that we
describe draws upon ideas in [Zhang and Wagener, 2008]. The interaction term
takes the form

Zrs
i
Tγrs =

q∑

j=1

q∑

k=1
γrsjkT

r
ijT

s
ik.

Relating this expression to the general form of the interaction term Frs
i de-

scribed above, we can see that performing PCA prior to computing the in-
teractions is a means of constraining the linear interaction term of Equation
(3.2).
The submatrix of interactions is Zrs = {T rijT sik}j=1,··· ,q;k=1,··· ,q

i=1···n , and γrs = {γrsjk}
is a vector of size q2 describing the interaction between genes r and s. In
particular, if a single principal component is chosen (q = 1), there will be only
one parameter to estimate per interaction.

Partial Least Squares

Wang et al. [2009] proposed an alternative method for integrating interactions
between genes using a PLS approach. Let (Xr,Xs) be the genotypic matrix for
the given pair of genes (r, s). Their approach computes the components that
maximize cov2(Xrw,Lq), with L = (y,Xs) and (w,q) the weight vectors. The
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interaction of a couple of genes (r, s) is then represented by the first q latent
variables Tr

n,q:

Zrs
i
Tγrs =

q∑

j=1
γrsj T

rs
ij .

In this approach phenotypic information is retained when the interaction vari-
ables are constructed.

Canonical Correlation Analysis

Some methods based on CCA have been developed to detect interactions such
as the canonical correlation-based U statistic (CCU) [Peng et al., 2010] and the
kernel versions of CCU [Larson et al., 2014; Yuan et al., 2012]. These methods
also consider the phenotype in their construction, but can be applied only to
case-control designs.
In our setting we propose to use CCA in the following way: for two genes r
and s, we define new variables Ur and Vs which are linear combinations of
the original variables Xr and Xs:





Ur = XrWr,

Vs = XsQs

where Wr, Qs are the matrices whose columns define the weight vectors, which
are solution of the CCA. We propose to code the interaction of a couple of genes
(r, s) by the first q component couples of a CCA:

Zrs
i
Tγrs =

q∑

j=1
γrsj U

r
ijV

s
ij.

Machine Learning

We also investigate the use of machine learning approaches to compute inter-
action variables. For each couple of genes (r, s), we define one model using the
corresponding SNPs and the phenotype and use the predicted phenotype as
an interaction variable. Predictions are obtained using either random forest,
boosting, support vector machine or neural network as presented bellow.

• Random Forest
A random forest is constructed on a train sample of the data (Xr, Xs,
y) for each couple of genes. 500 bootstrap samples are used to generate
the trees of a random forest. At each occurring split in a tree, m random
predictors are used to generate the split. If the phenotype y is continuous
m = pr + ps

3 and if y is categorical m = √pr + ps with pr the number of
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SNPs in gene r and ps the number of SNPs in genes s. Alternatively, we
can also construct a random forest for each couple using the matrix F rs,
representing all pairwise SNPs products between the two genes r and s,
rather than the simple SNPs matrix [Xr, Xs].

• Boosting
When using boosted regression trees, for each couple of genes r and
s, 2000 trees are generated with a maximum of 4 splits for each tree.
For continuous outcomes, the loss function chosen is the squared error
(yi − f(Xi))2 whereas for binary outcomes we chose the AdaBoost ex-
ponential loss function exp[−(2yi − 1)f(Xi)] or the logistic loss function
−2(yif(Xi)− log[1 + exp[f(Xi)]]).

• Support Vector Machine
Using a support vector machine algorithm, we first consider the data
(Xr, Xs, y). The model is then fit on a train sample of this data using a
specific kernel. Among the available kernels we chose to consider linear
kernel, polynomial kernel of degree d = 3 or d = 5 and radial basis kernel.

• Neural Networks
Finally, we investigate the use of neural networks to define interaction
variables. We consider as input layer all the SNPs contained in the genes
r and s. We define one hidden layer with k neurons and we fix k = 2 to
correspond to the number of genes in the neural network.

Gene-Gene Eigen-Epistasis

We propose an original approach for modeling interactions. The general idea is
to consider the interaction variable between the two genes r and s as a function
fu(Xr,Xs) parameterized by u.
Ideally, we would like to choose a function that meets some of the following
conditions:

• The interaction variable between genes r and s brings information which
is different from the information brought by the genes themselves. From
an algebraic point of view, this could be stated as fu(Xr,Xs) belongs to
the orthogonal subspace spanned by the columns of Xr and Xs.
• The interaction variable brings maximal information about the pheno-

type, which we could formulate as fu(Xr,Xs) and the phenotype have a
maximum covariance.
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With these considerations, we can propose two ways to estimate u. The first
way is to minimize the covariance between the interaction function and the
genotype and the second to maximize the covariance between the interaction
function and the phenotype.

If we consider the function f to be linear, both problems become easily tractable
and each one has only one solution. Setting

Zrs = fu(Xr,Xs) = Frsu,

where Frs = {Xr
ijX

s
ik}j=1··· ,pr;k=1,··· ,ps

i=1···n and u ∈ Rprps we obtain, depending on
the chosen criterion, the two following problems:

• Minimization of the correlation with the genotype (G-GEEc1)

û = arg min
u,‖u‖=1

ˆcov2(X, fu(Xr,Xs)),

with the genotype matrix X = (Xr,Xs) that corresponds to the SNPs
of both genes r and s,

min
u,‖u‖=1

|| ˆcov[Frsu,X]||2 = min
u,‖u‖=1

||uTFrsTX||2 = min
u,‖u‖=1

uTFrsTXXTFrsu .

In this first case, the solution u is the eigenvector corresponding to the
smallest eigenvalue of the matrix FrsTXXTFrs. We then use the projec-
tion of the matrix Frs on u as the interaction variable Zrs = Frsu.

• Maximization of the correlation with the phenotype (G-GEEc2)

û = arg max
u,‖u‖=1

ˆcov2(y, fu(Xr,Xs)),

with:

max
u,‖u‖=1

|| ˆcov[Frsu,y]||2 = max
u,‖u‖=1

||uTFrsTy||2 = max
u,‖u‖=1

uTFrsTyyTFrsu .

The solution u is the eigenvector corresponding to the largest eigenvalue
of the matrix B = FrsTyyTFrs, this eigenvector being the vector FrsTy.
Indeed, if we note u = FrsTy, then B = uuT and we can easily see that
only one eigenvalue λ exist for B:

Bu = λu
uuTu = λu

with uTu a scalar that define λ. The complexity of computing u is there-
fore in O(nprps). We then use the projection of the matrix Frs on u as
the interaction variable Zrs = Frsu.
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With this second approach, the resulting Eigen-Epistasis vector Z is the lin-
ear combination of all the SNP-SNP interactions being the most correlated
with the phenotype. The vector u can be interpreted as a weight vector defin-
ing the importance of each pairwise interaction. In its construction, G-GEEc2
has similarities with PLS. The main difference lies in the original design ma-
trix. PLS searches for components that maximize ˆcov2(Xru,yXsv), whereas
G-GEEc2 retains the component that maximizes ˆcov2(y,Frsu), with Frs the
matrix of all pairwise interactions between the two genes r and s. Like PLS,
G-GEEc2 takes phenotypic information into account in the construction of the
interaction variables.

3.4 Estimation of coefficients
Once the groups are defined and the interaction variables created, we are now
interested in estimating the parameters of the model (3.1). In the context
of large data sets with group structure, we choose to use a Group LASSO
approach [Yuan and Lin, 2006]. A group includes either the SNPs of a given
gene, or interaction terms relative to a given gene-pair interaction. In the
particular case of linear regression, the model parameters are estimated by:

θ̂ = (β̂, γ̂) = argmin
β,γ

(∑

i

(yi −Xiβ − Ziγ)2 + λ

[∑

g

√
pg||βg||2 +

∑

rs

√
prps||γrs||2

])
,

(3.3)
whereas in the case of logistic regression:

θ̂ = (β̂, γ̂) = argmin
β,γ

(∑

i

−logL(yi; Xiβ + Ziγ) + λ

[∑

g

√
pg||βg||2 +

∑

rs

√
prps||γrs||2

])
,

(3.4)
In both cases the parameter λ is selected by cross-validation.

The use of Group LASSO will allow to obtain a list of significant groups whose
coefficients are different from zero. However, as explained in Section 2.2.1, it is
difficult to determine the relative importance of each of the selected groups. In
order to improve estimation accuracy and to obtain p-values for each selected
group, we will resort to the adaptive ridge cleaning approach proposed by Bécu
et al. [2017] which is briefly described below.

SettingHθ = Xβ+Zγ, and J(θ) as either J(θ) = ∑
i (yi −Hiθ)2 or J(θ) =∑

i−logL(yi; Hiθ) depending on y considered, the Group LASSO presented in
the equations 3.3 and 3.4 can be written as:

θ̂ = argmin
θ

(
J(θ) + λ

[∑

g

√
pg||θg||2

])
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with g representing either a gene or interaction group.

The screen and clean procedure proposed by Bécu et al. [2017] is a two-stage
method. The Group LASSO model is first fitted on half of the data during
the screening stage. The set of selected groups is the support Ŝ. Then, the
coefficients of these candidate groups are introduced into a ridge regression
model fitted on the second half of the data with a specific penalty that allows
to take into account the group structure:

θ̃ = argmin
θ ; θj=0 if j /∈Ŝ


J(θ) + µ


∑

g

∑

j∈g

λ
√
pg

||θ̂g||2
θ2
j




 .

with g representing either a gene or interaction group. In this equation θ̂g rep-
resents the regression coefficients obtained by the Group LASSO with penalty
parameter λ.

We can see that the cleaning stage retains the magnitude of the coefficients θ̂g

estimated in the screening stage thus encouraging a larger penalization of the
small coefficients over the larger ones. This second stage will allow to select
groups of variables among the ones that have passed the first screening stage.
For each of these groups, the significance of the regression coefficients is esti-
mated using a Fisher statistic as described below.

Let
Fg =

∑
i(yi − ŷωi )2 −∑i(yi − ŷΩ

i )2
∑
i(yi − ŷΩ

i )2 ,

the F-statistic for the group g with ŷΩ the predicted values using all groups
g ∈ Ŝ and ŷω the predicted values obtained without the group g. As the usual
F-test is not exact for Ridge regression, Bécu et al. [2017] proposed to estimate
the distribution of the F-statistic under the null hypothesis using the matrix
H with permuted elements of the columns corresponding to group g :

F ∗g =
∑
i(yi − ŷωi )2 −∑i(yi − ŷΩ∗

i )2
∑
i(yi − ŷΩ∗

i )2 ,

with ŷΩ∗ the predicted values calculated using all groups g ∈ Ŝ on the ma-
trix H∗ of permuted values for columns corresponding to group g. Empirical
p-values are then obtained for each group as pg = 1

B
#{Fg ≤ F ∗g } with B the

number of permutations.

The p-values obtained for each group are then corrected for multiple testing
by the use of Benjamini and Hochberg procedure.





Chapter 4
Evaluation and application of interaction
modeling

In this chapter we will present simulation studies that aim to compare the
different modeling strategies described in Chapter 3. In the first part of this
chapter we will introduce the various designs used to generate both genotypes
and phenotypes. The second and third sections will focus on the presentation
of the obtained results. We will finish this chapter by an application of the most
promising methods on two real datasets related to Ankylosing spondylitis and
Crohn’s disease in order to investigate the presence of gene interactions.
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4.1 Genotype and phenotypes designs for sim-
ulation studies

Different types of data sets will be considered. First, regarding the genotype,
we will differentiate cases where data are completely generated (and where all
parameters can be controlled) from cases where realistic data are used. The
latter allow to consider more complex and real genetic structures. Simulated
genotypes will be used in Section 4.3.1 to define the most meaningful param-
eters to use for properly comparing gene epistasis detection methods. The set
of parameters that will be investigated are the following: size of the data set,
values of the coefficients allocated to marginal and interacting effects respec-
tively, correlation among SNPs in a gene, minor allele frequencies (MAF) of
causal SNPs, values of the coefficient of determination R2, number of compo-
nents to construct interaction variables when using variable reduction based
methods but equally the type of genetic effects considered and the presence
or absence of the corresponding marginal effect for each simulated interaction.
Methods will then be evaluated using either simulated genotypes or real data.
In addition to the type of genotype considered, the simulation of phenotypes
will vary according to the simulation model considered but also according to
the type of outcome (continuous or binary).

4.1.1 Genotypes
Simulated Genotypes

Genotype simulation design was adapted from the model used in [Wu et al.,
2009] with an extension to control the MAF of each SNP. The n lines of the
genotype matrix are an i.i.d. sample from a multivariate random vector X i ∼
Np(0,Σ). The correlation matrix Σ is block diagonal, each block corresponding
to a gene. The correlation between two variables belonging to the same gene
is ρ while all other correlations are null. To each SNP (column of the genotype
matrix) is randomly assigned a MAF p from a uniform distribution between
0.05 and 0.5. For each causal SNP, the MAF is changed to a fixed value (0.1, 0.2
or 0.4). The genotype frequencies derived from the Hardy-Weinberg equation
are then used to discretize Xik values to 0, 1 or 2. In practice, Xik is set to 0
if Xik > q(2p−p2);N(0,1), Xik is set to 2 if Xik < q(p2);N(0,1) and Xik is set to 1
otherwise.

Genotypes from real data set

We will consider genotypes coming from a real GWAS data set of the Interna-
tional Genetics of Ankylosing Spondylitis (IGAS) study [Cortes et al., 2013]
containing 116,513 SNPs for 763 subjects (more details are given in Section
4.4.2). For each SNP we obtained gene affiliation using the NCBI2R package
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[Melville, 2012] which annotates lists of SNPs with current information from
NCBI. We considered only SNPs located within a single gene in order to form
groups of genes without overlap. We identified 7,216 genes in the data set for
a total number of 63,340 SNPs. At each iteration we will focus on a set of six
genes randomly sampled from the 7,216 ones. The size of each data set will
thus vary depending on the sampled genes.

4.1.2 Phenotype simulation
Different schemes can be used to generate phenotype vectors. In a first phase
we will focus on the generation of continuous phenotype vectors with a partic-
ular consideration for the error term generation. We will then detail how the
phenotype simulation models can be adapted to binary output.

“Wang Pathway” model

A first scheme corresponds to the model proposed by Wang et al. [Wang et al.,
2014b] (which we will refer to hereafter as the “Wang Pathway” model):

yi = β0 +
∑

g

βg


∑

k∈C
Xg
ik


+

∑

rs

γrs


 ∑

(j,k)∈C2

Xr
ijX

s
ik


+ εi, (4.1)

where C and C2 are respectively the set of causal SNPs and causal interactions,
and εi a random Gaussian variable. For each causal gene g, we set a specific
number of causal SNPs and a coefficient βg is assigned to the standardized
sum of these causal SNPs. In the same way, for the interactions, all the causal
SNPs from a causal pair (r, s) are pairwise multiplied and a coefficient γrs is
assigned to the standardized sum of the product.

PCA model

A second scheme for simulating phenotypes is based on the following model:

yi = β0 +
∑

g

βg


∑

k∈C
Xg
ik


+

∑

rs

γrs


 ∑

(j,k)∈C2

Cr
ijC

s
ik


+ εi. (4.2)

The difference with the first model concerns the simulation of the interaction
effects. In the second model the interaction effect for a causal pair (r, s) is
defined as the product of the first PCA component Cr

.1 of gene r and the first
PCA component Cs

.1 of gene s.

Error term

In both models, εi is generated independently from a N (0, σ2), with σ2 deter-
mined from the coefficient of determination R2 that calibrates the strength of
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the association. Both simulation models can be written as

yi = XT
i β +ZT

i γ + εi

where X is the marginal effect genotype matrix and Z the interaction effect
matrix.
Let us denote Hθ = [X,Z]

[
β
γ

]
and

R2 =
∑(Hiθ − ȳ)2

∑(Hiθ + εi − ȳ)2

=
∑(Hiθ − ȳ)2

∑(Hiθ − ȳ)2 +∑
ε2i +∑ 2(εi(Hiθ − ȳ))

=
∑(Hiθ − ȳ)2

∑(Hiθ − ȳ)2 + n v̂ar(εi) + 2n ĉov(εi,Hiθ − ȳ) .

We remark that:

2n cov(εi,Hiθ − ȳ) = 2n cov(εi,Hiθ −
∑
j yj
n

)

= 2n cov(εi,Hiθ)−
∑

j

2n
n
cov(εi, yj)

= 0− 2 cov(εi, εi) = −2σ2

Thus, replacing v̂ar(εi) by σ2, and ˆcov(εi,Hiθ − ȳ) by −σ2/n, we obtain

R2 ≈
∑(Hiθ − ȳ)2

∑(Hiθ − ȳ)2 + nσ2 − 2σ2 .

This relation between R2 and σ2 gives us an expression for σ2 that depends
on R2,

σ2 = (1−R2)∑(Hiθ − ȳ)2

R2(n− 2) .

We looked at how much of the coefficient of determination R2 is explained
by main effects, and how much is explained by interaction effects, in order to
determine their respective roles in the model.

For a similar reason, when simulating phenotypes, Wang et al. [2014b] ex-
amined how much of partial R2 was due to interaction effects. They selected
coefficient values so that 30% of the partial R2 was explained by interaction
effects. Li and Cui [2012] did not use the R2 directly, but they simulated data
assuming different proportions of interaction effects among the total genetic
variance. In our study, once the phenotype y had been set for each simulated
design matrix, we computed how much of the R2 could be attributed to in-
teractions and main effects as pI = R2

I

R2
T

and pM = R2
M

R2
T

respectively, with R2
I
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the R-square value for the model containing only simulated interaction effects,
R2
M the R-square value where there were only simulated main effects, and R2

T

R-square value where there were both simulated main effects and simulated
interaction effects. As the contribution of each type of effect may not be dis-
tinguishable, the sum of pI and pM may not be equal to one.

Binary phenotype

Both models can be adapted to binary phenotypes by using a logit link func-
tion,

ln
(

pi
1− pi

)
= XT

i β +ZT
i γ,

where X is the marginal effect genotype matrix, Z the interaction effect ma-
trix. The phenotype, case = 1 or control = 0, is defined using a Bernouilli
distribution with the probability pi for individual i to be a case.

Using this simulation model, it is not directly possible to calibrate the strength
of the association between the covariates and the phenotype as well as the error
term does not appear clearly in the model. It is however possible to examine
the respective roles of main and interaction effects in the model using a Pseudo
R-square value adapted to logistic regression such as the McFadden’s R-square
R2
McF which is defined as

R2
McF = 1− Log(Lm)

Log(L0)

Here, Lm denote the maximized likelihood value from the current fitted model,
and L0 denotes the corresponding value for the null model with only an inter-
cept and no covariate.
Thus, it is possible to compute pI and pM using McFadden’s R-square, that is

pI =
R2
McFI

R2
McFT

and pM =
R2
McFM

R2
McFT

and to evaluate the part of R2
McF respectively

due to interactions and main effects. As previously, pI and pM may not be
equal to one because of interdependence of interaction and marginal effects.

4.1.3 Evaluation criteria
For all simulation studies, power and false positive rates for each type of effects
will be estimated by:

• Power: 1
n

∑n
i=1

TPi
number of simulated effects,

• False Positive Rates: 1
n

∑n
i=1

FPi
(TPi + FPi)
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with n the total number of iterations, TPi the number of true discoveries and
FPi the number of false discoveries obtained at the iteration i. The mean of
the rates obtained over all iterations are then computed to estimate the false
positive rate of each simulation setting.

4.2 Comparison of Group LASSO and univari-
ate models

In the following we will examine the power of the Group LASSO (presented in
Section 3.4) to detect interactions in comparison with two univariate estima-
tion models.

The simulation study is conducted with continuous phenotypes and simulated
genotypes. Each simulated data set is composed of 600 subjects and 8 genes,
each of them containing 6 SNPs. Markers among the same gene are correlated
at level ρ = 0.8, two markers in each gene are considered as causal with a MAF
value of 0.2. Continuous phenotype are obtained using the “Wang Pathway”
model (Section 4.1.2) with an identical value, fixed to 2, for coefficients β and
γ. Interaction variables, one by couple of genes, are obtained using the G-GEE
approach.

When using the Group LASSO, the significance of interaction variables is
tested under the following model:

y =
G∑

g=1

pg∑

j=1
βg,jX

g
j +

∑

r,s

γr,sZ
r,s + ε.

The coefficients are estimated using Group LASSO with one group defined for
each gene g among G and one group defined for each interaction variable of
each couple of genes (r, s). The p-values for each group are obtained using an
adaptive ridge cleaning as explained in Section 3.4.

In the univariate models, every couple of genes (r, s) and their interactions
is tested for an association with the phenotype. We considered two different
univariate models:

• LM1:
y = γr,sZ

r,s + ε,

• LM2:
y =

pr∑

j=1
βr,jX

r
j +

ps∑

j=1
βs,jX

s
j + γr,sZr,s + ε,
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In LM1, no main effect is considered, the model is only constituted of the in-
teraction variable Zr,s. In LM2, the main effects of each gene are considered
with the interaction effect by the presence of all their respective SNPs, a coeffi-
cient β is attributed to each marker. As phenotype are continuous, coefficients
are estimated using a multivariate regression model. The p-values correspond-
ing to interaction variables are adjusted for multiplicity with Benjamini and
Hochberg method.

Four different scenarios are considered:

Id Main effects Interaction effects
1 Gene1 x Gene2

Gene3 x Gene4
2 Gene1, Gene2, Gene1 x Gene2

Gene3, Gene4 Gene3 x Gene4
3 Gene1, Gene2,

Gene3, Gene4
4 Gene1, Gene2 Gene3 x Gene4

Gene5 x Gene6

In the first setting, only two interactions are generated, the first one between
the two first genes and the second between the third and fourth genes of the
data set. The second setting is similar to the first one excepted that the four
genes also have main effect. In the third setting, only main effects are gener-
ated for the fourth first genes. The last setting combines the presence of main
effects (two first genes) and different interaction effects (between the third and
fourth genes and between the fifth and sixth genes of the data set).

Results obtained for each model under the four scenarios are presented in
Figure 4.1. Overall, the estimations of LM2 model and the Group LASSO
are the ones showing the less false discoveries, with a better power to detect
the interaction effects for the Group LASSO model. However, the two models
have more difficulties to detect interaction effects when main effects are also
simulated and especially when the same gene is concerned (scenario 2). The
LM1 model detects all interaction variables containing at least one gene that
has been simulated as having one main or interacting effect leading to a large
number of false discoveries. However, if we look at Figure 4.2, that presents
the results obtained with the LM1 model in the first iteration realized in the
first scenario, we can see that even if a large number of interaction variables
presents a significant p-value, the interaction variables that concern the true
couples of interacting genes form a distinct group of very small p-values.

Overall we can see that the Group LASSO is the estimation model that presents
the better compromise between good power and small amount of false discover-
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Scenario 1
GLASSO LM1 LM2

X.Genes7.Genes8
X.Genes6.Genes8
X.Genes6.Genes7
X.Genes5.Genes8
X.Genes5.Genes7
X.Genes5.Genes6
X.Genes4.Genes8
X.Genes4.Genes7
X.Genes4.Genes6
X.Genes4.Genes5
X.Genes3.Genes8
X.Genes3.Genes7
X.Genes3.Genes6
X.Genes3.Genes5
X.Genes3.Genes4
X.Genes2.Genes8
X.Genes2.Genes7
X.Genes2.Genes6
X.Genes2.Genes5
X.Genes2.Genes4
X.Genes2.Genes3
X.Genes1.Genes8
X.Genes1.Genes7
X.Genes1.Genes6
X.Genes1.Genes5
X.Genes1.Genes4
X.Genes1.Genes3
X.Genes1.Genes2

Scenario 2
GLASSO LM1 LM2

X.Genes7.Genes8
X.Genes6.Genes8
X.Genes6.Genes7
X.Genes5.Genes8
X.Genes5.Genes7
X.Genes5.Genes6
X.Genes4.Genes8
X.Genes4.Genes7
X.Genes4.Genes6
X.Genes4.Genes5
X.Genes3.Genes8
X.Genes3.Genes7
X.Genes3.Genes6
X.Genes3.Genes5
X.Genes3.Genes4
X.Genes2.Genes8
X.Genes2.Genes7
X.Genes2.Genes6
X.Genes2.Genes5
X.Genes2.Genes4
X.Genes2.Genes3
X.Genes1.Genes8
X.Genes1.Genes7
X.Genes1.Genes6
X.Genes1.Genes5
X.Genes1.Genes4
X.Genes1.Genes3
X.Genes1.Genes2

Scenario 3
GLASSO LM1 LM2

X.Genes7.Genes8
X.Genes6.Genes8
X.Genes6.Genes7
X.Genes5.Genes8
X.Genes5.Genes7
X.Genes5.Genes6
X.Genes4.Genes8
X.Genes4.Genes7
X.Genes4.Genes6
X.Genes4.Genes5
X.Genes3.Genes8
X.Genes3.Genes7
X.Genes3.Genes6
X.Genes3.Genes5
X.Genes3.Genes4
X.Genes2.Genes8
X.Genes2.Genes7
X.Genes2.Genes6
X.Genes2.Genes5
X.Genes2.Genes4
X.Genes2.Genes3
X.Genes1.Genes8
X.Genes1.Genes7
X.Genes1.Genes6
X.Genes1.Genes5
X.Genes1.Genes4
X.Genes1.Genes3
X.Genes1.Genes2

Scenario 4
GLASSO LM1 LM2

X.Genes7.Genes8
X.Genes6.Genes8
X.Genes6.Genes7
X.Genes5.Genes8
X.Genes5.Genes7
X.Genes5.Genes6
X.Genes4.Genes8
X.Genes4.Genes7
X.Genes4.Genes6
X.Genes4.Genes5
X.Genes3.Genes8
X.Genes3.Genes7
X.Genes3.Genes6
X.Genes3.Genes5
X.Genes3.Genes4
X.Genes2.Genes8
X.Genes2.Genes7
X.Genes2.Genes6
X.Genes2.Genes5
X.Genes2.Genes4
X.Genes2.Genes3
X.Genes1.Genes8
X.Genes1.Genes7
X.Genes1.Genes6
X.Genes1.Genes5
X.Genes1.Genes4
X.Genes1.Genes3
X.Genes1.Genes2

Figure 4.1: Discoveries obtained for each scenario and each model. Each square
of each matrix represents the number of times where a variable was detected
as significant over the total number of iterations.
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X.Genes2.Genes8
X.Genes3.Genes4
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X.Genes3.Genes6
X.Genes3.Genes7
X.Genes3.Genes8
X.Genes4.Genes5
X.Genes4.Genes6
X.Genes4.Genes7
X.Genes4.Genes8
X.Genes5.Genes6
X.Genes5.Genes7
X.Genes5.Genes8
X.Genes6.Genes7
X.Genes6.Genes8
X.Genes7.Genes8

0 10 20
−log10(pval.adj)

Interaction effects:
●

●

●

●

Both genes, right couple
Both genes, false couple
Only one gene
None effect

Scenario 1, simulation 1, LM1

Figure 4.2: Discoveries obtained for the LM1 model under the first simulation
of the first scenario. The negative value of the base 10 logarithm of the adjusted
p-value is presented for each interaction variable. The threshold of significance
(p-values ≤ 0.05) is represented by a orange line. A color is attributed to each
dot depending on the type of effect simulate.

Scenarios
1 2 3 4

GL 3h 40m 15s 4h 04m 07s 2h 54m 22s 4h 23m 41s
LM1 23s 18s 13s 17s
LM2 40s 34s 25s 32s

Table 4.1: Execution time for each model under each scenario for the 500
simulations.

ies among the three models and we will keep this model for the next simulation
studies. This estimation model is however limited by its computational time
as we can see in Table 4.1.

4.3 Comparison of variable interaction model-
ing

In this section we will compare different strategies to model interactions. The
first simulation study will focus on comparing the performance of the PCA,
CCA and PLS based approaches and will aim to set the parameters to use for
comparison in the other simulation studies. The second section will present
the results of the two originals new modeling approaches that we propose to
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construct interaction variables in comparison with the previous ones. The most
promising approach among the two original ones will be then compared to the
PCA and PLS based approaches in a more realistic context. We will finish by
presenting the results obtained when representing interactions using machine
learning based modeling.

4.3.1 Setting parameters
For each simulation we considered two interaction effects (between the first
and second genes and between the third and fourth genes) and we considered
two causal SNPs by causal gene. Simulated genotypes are considered and con-
tinuous phenotype are obtain using the “Wang Pathway” model (section 4.1.2).

In the following, we used different scenarios in which we chose to vary the
following parameters: the correlation level among SNPs belonging to the same
gene, the MAF value of causal SNPs, the values for the coefficients β and γ,
the number of components to retain to represent the interaction between each
couple of causal genes but also the coefficient of determination value r2, the
size of the data set and the presence or absence of main effects. The different
values considered for each parameter are presented bellow. Only one parameter
is investigated for each scenario the other parameters being fixed to the bold
reference values.

• correlation among SNPs: 0.2, 0.8,

• MAF value of causal SNPs: 0.1, 0.2, 0.4,

• values of coefficients: β = 1 or β = 2 and γ = 1 or γ = 2,

• number of components to construct interaction variables: 1, 2, 3,

• coefficient of determination: R2 = 0.2, R2 = 0.05,

• number of genes: 10, 64

• number of SNPs in each gene: 6,

• number of causal SNPs by causal gene: 2,

• number of subjects: 600, 300

• type of effects: 4 main effects for 2 interactions or only 2 interactions,

• number of iterations: 1000.

The following figures display the power to detect main and interaction effects
along with the false positive rates of each type of effects for each simulations
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Figure 4.3: On the left: variation of the number of components to construct
interaction variables for each couple of genes. On the right: Interactions simu-
lated with or without the presence of their marginal effects.

of each scenario.

Figure 4.3 presents the influence of the number of considered components to
represent the interaction of a couple of genes in the model along with the
importance for the genes in interaction to also present main effects. As we
are not interested in investigating the potential role of the coefficient values
with these two scenarios, in all the simulations, the value of the coefficients
β and γ will be sampled in the interval [log(1.1), log(1.3)]. The importance
of these latter parameters will be investigated in the next scenarios. Overall,
we can see that the PLS based method seems to perform better than PCA
or CCA to detect interaction effects but is less efficient to detect the four
main simulated effects (if we look at the discoveries matrix of the second sce-
nario in Figure 4.4, we can see that the PLS based method detect only the
first gene with a good power). We can also note that the false positive rate
among interaction effects is larger for the PLS based method. Regarding the
two parameters compared in those simulations, we can see that increasing the
number of components considered to define interactions do not seems to have
an important effect with the PCA based method apart from a slight reduc-
tion of the false positive rate to detect interaction effects. We can observe a
difference with CCA but mainly regarding the power to detect main effects.
The power of the method diminishing when a larger number of components
are considered. Finally, regarding the PLS based method, the power to detect
main effect is more important when only one component is considered. When
the number of components increases, the ability of the method to detect any
type of effects (whether being true or false) decreases. In this scenario, where
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Figure 4.4: Discoveries matrices for the simulations with or without main ef-
fects. Each square represents the number of times where a variable was detected
as significant over the total number of iterations.

the variation of the number of components is considered, we observe a very
low false positive rate for detecting main effects for the three methods and
for each simulation. However, in the second scenario, where we are interested
in comparing the impact of the presence or absence of the main effects cor-
responding to the simulated interactions, the false positive rate for detecting
main effects varies widely between the simulations. In the simulation where no
main effects were simulated we can see that the false positive rate to detect
main effects is close to one whereas it is close to zero in the other case. When
we look at the discoveries matrix corresponding to this two simulations (Fig-
ure 4.4), we can see that these false discoveries correspond to the genes that
have been simulated to have interaction effects. We can also note that when
the genes simulated as having an interaction do not have a main effect, the
power of the PLS based method to detect those interactions is slightly reduced.

We will then focus on the impact the size effects. In the first scenario pre-
sented on the left side of the Figure 4.5 we compare two simulations in which
the coefficients β, related to the each marginal effects, are alternately smaller
or larger than the coefficients γ that are related to the interaction effects of
each couple (see the “Wang Pathway” phenotype simulation model in Section
4.1.2). In the first simulation β = 1 and γ = 2 whereas in the second one β = 2
and γ = 1. Overall we can see that changing the size of the different simulated
effects does not seem to have a considerable impact for the three methods. The
power to detect main effects seems to be slightly larger when β > γ for the
CCA and PCA based methods. The same observation can be made concerning
the false positive rate to detect interactions for the PLS based approach. On
the right side of Figure 4.5 we are interested in comparing the impact of the
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Figure 4.5: On the left: variation of the size of the coefficients β and γ in the
simulation of the phenotype. On the right: variation of the MAF of causal
SNPs.

MAF value of the causal SNPs. As for the previous scenario, the modification
of this parameter does not seem to have a large impact for the three method
apart from a slight decrease of the power to detect main effects for the CCA
and PCA based methods when the MAF value is low.
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Figure 4.6: On the left: variation of the number of genes and subjects consid-
ered. On the right: variation of the R2 value.

Figure 4.6 presents the impact of the considered data set size along with the
R2 value which parameterizes the difficulty of the simulation model. In both



4.3. Comparison of variable interaction modeling 95

scenarios we can see that the power of all methods to detect main effect drasti-
cally decreases either when the R2 is low or when the simulations are realized
in a higher dimensional context (300 subjects and 64 genes of 6 SNPs corre-
sponding to 384 variables). We can also see that the ability of the PLS based
method to detect any kind of interaction effects decreases in those contexts.
The power as well as the false positive rates to detect interactions are smaller.
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Figure 4.7: Variation of the correlation among genes.

Figure 4.7 presents the impact of changing the level of correlation among SNPs
in a gene, and compares the results of the three methods to the 3G-SPA ap-
proach proposed by Li and Cui [2012] (more details regarding this method are
given in Section 2.3.3). When the correlation between the SNPs is low, the
PCA, CCA and PLS based methods are less powerful to detect the main ef-
fects. However we can see that the PLS based approach detect more interacting
effects in this context as both power and false positive rate to detect interac-
tions increase. Regarding the method 3G-SPA, we can see that the number
of false positives among interactions is extremely high compared to the other
methods and does not seem adapted to a context close to our simulation set-
ting.

The parameter modifications that present the largest impacts concern the R2

value, the size of the data set and the presence or absence of the marginal effects
of the genes simulated as having an interaction effect. In the next simulation
studies we will focus on those parameters in order to compare the performance
of the investigated methods. Other parameters will be fixed to the following
values:

• correlation among SNPs: 0.8,
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• MAF value of causal SNPs: 0.2,

• values of coefficients: fixed to β = 2 and γ = 2,

• number of components to construct interaction variables: 2,

• number of genes: 6,

• number of SNPs in each gene: 6,

• number of causal SNPs by causal gene: 2,

• number of subjects: 600,

• number of iterations: 1000.

4.3.2 Two new approaches: G-GEEc1 and G-GEEc2

In the following, we will compare the PCA, CCA and PLS based approaches
with the two new interactions modeling methods, G-GEEc1 and G-GEEc2, that
we described more precisely in the section 3.3.2. We will compare the perfor-
mances of the five approaches for eight different R2 values (0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7) and we will consider various types of marginal and interaction
effects in order to evaluate more specifically the impact of the presence of main
effects. We will also consider scenarios where the size of the data set will change.

For each scenario we will simulate genetic effects using the two different phe-
notype simulation models presented in Section 4.1.2 and investigate their re-
spective impacts. We will refer to the different simulation settings by using
letters as described in Table 4.2.

Settings Names
Id Main effects Interaction effects Wang Pathway

model
PCA model

1 Genes 1, 2 Genes 1 x 2 A B
2 Genes 1, 2 Genes 3 x 4 C D

Table 4.2: Effects simulated in each settings and referring names according to
the phenotype simulation model.

Figures 4.8 and 4.9 present the results obtained for the two settings. In Fig-
ure 4.8, the first two columns give the estimated power to respectively detect
the gene interaction and the marginal effects as a function of the R2 values.
The last two columns show false positive rates among main and interaction
effects depending on the R2 values. Figure 4.9 shows in more details the dis-
coveries obtained for a particular R2 and for each setting.
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Overall we can see that the two methods G-GEEc1 and CCA present very low
power to detect interaction effects in all simulations of both settings but are
more effective to detect marginal effects. Indeed, we can see that for all simu-
lation settings the power to detect the two simulated main effects are close to
one as soon as R2 > 0.2 whereas the power to detect the interaction effect is
almost always close to zero, with an exception for CCA which tends to slightly
detect the interaction effect for large value of R2 when phenotypes are simu-
lated with the PCA model (Figure 4.8(B, D)). We can also note that, in the
second setting, when the phenotypes are simulated using the “Wang Pathway”
model (Figure 4.8(C)) both methods detect false positive effects among main
effects. Looking at Figure 4.9, we can see that these false positives correspond
to the two genes that have been simulated as having an interaction effect only.
In the same setting but when the phenotypes are simulated using the PCA
model (Figure 4.8(D)), the false positive rates are very low but the genetic
effects of both genes simulated with the interaction effect are nearly not de-
tected at all.

Regarding the three other methods, we can see that the PLS based approach
is able to detect interaction effects only when the genes involved in the interac-
tion effect have a marginal effect. The power of this method to detect marginal
effects is close to 0.5 for all settings as soon as R2 > 0.2. When looking at Fig-
ure 4.9 we can see that it is because, in all the settings, only the first gene
of the two simulated marginal effects tends to be detected. We can also note
that the PLS based approach tends to detect an interacting signal between
the genes simulated as having a main effect. Indeed we can see that the false
positive rate for interactions is greater in the second setting (Figure 4.8(C, D))
and that the false detecting effects correspond to the interaction between gene
1 and gene 2 (Figure 4.9(C, D)).

The ability of the PCA based method to detect interactions mainly depends on
the phenotype simulation model. The PCA based method shows good perfor-
mance when the phenotypes are simulated using the PCA model (Figure 4.8(B,
D)) but this can be explained by the similarity between the phenotype sim-
ulation model and the estimation model. When the phenotype is simulated
using the “Wang Pathway” model (Figure 4.8(A, C)), the PCA based method
presents a good power to detect the two marginal effects but its power to detect
the interaction effect sharply drops as the R2 value declines. For high R2 values
(0.7), and contrary to the PLS based method, the PCA based method seems to
detect more easily the interaction effect when the corresponding genes do not
have a marginal effect. Like G-GEEc1 and CCA, in the second setting, when the
phenotypes are simulated using the “Wang Pathway” model (Figure 4.8(C)),
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Figure 4.8: Interaction effect power. The figures in the two first column
show the power to respectively detect interaction and marginal effects of all
methods depending on the R2. The last two columns present the false positive
rates of each method depending on the R2. The panels A, B, C and D refer
to the different simulation settings described in Table 4.2.
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Figure 4.9: Discoveries matrices. For each simulation setting A, B, C and
D, described in Table 4.2, are presented two discoveries matrices for two
given values of R2. Each square of these matrices represents the number of
times where a variable was detected as significant over the total number of
iterations.
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PCA based approach tends to detect false positive effects among main effects
that correspond to the two genes that have been simulated as having an inter-
action effect only (Figure 4.9(C)).

Finally, we can note that contrary to G-GEEc1, PCA and CCA based ap-
proaches, the power of G-GEEc2 to detect main effects sharply declines as the
R2 value diminishes. However, this approach presents globally a better power
to detect interaction effects than the other methods. When the phenotypes
are simulated using the PCA based method, the power of G-GEEc2 stays high
until the R2 value reaches 0.3 (Figure 4.8(B, D)). When the phenotypes are
simulated with the “Wang Pathway” model, the power to detect interaction
decreases quickly as the R2 value diminishes. However, in the first setting, the
power to detect interactions starts to increase for very small R2 values leading
to a U-shaped power curve. This phenomenon can be explained by the fact
that G-GEEc2 tends to easily assign marginal signals to genetic effects when
the R2 is high and to easily assign interaction signals to genetic effects when
the R2 is low. Indeed we can see in the second setting (Figure 4.8(C, D)) that
the false positive rates are more important among the main effects when R2

values are high and correspond to genes that have been simulated as having
interaction effect (Figure 4.9(C, D)). When R2 values are low the false posi-
tive rates are more important among interaction effects and concern couples
of genes that have been simulated either to present a marginal effect or an
interaction effect but with another gene.
Finally, in the second setting, we can also note a difference between the meth-
ods concerning false discoveries for the main effects. G-GEEc2 leads to false
discoveries when the phenotypes are simulated with the PCA model while the
other methods show false discoveries mainly when phenotype are simulated
with the “Wang Pathway” model.

To evaluate the performances of the different methods in a more complex
context, we also consider a scenario where we vary the number of genes that
compose each simulated data sets and where genetic effects are composed from
a mixture of independent marginal and interacting effects. In the first simu-
lation setting we will consider 25 genes and in the second 40 genes with the
following genetic effects:

Main effects Interaction effects
Gene1, Gene2 Gene3 x Gene4

Gene5 x Gene6
Gene7 x Gene8
Gene9 x Gene10

In these simulations, interacting genes are different from genes having marginal



4.3. Comparison of variable interaction modeling 101

effects. Genetic effects are simulated using the “Wang Pathway” model and we
only consider the case where R2 = 0.7. The results of these two simulations are
presented in Figure 4.10 and they reflect the good performance of the G-GEEc2
based method over the other approaches in detecting interactions in a context
where several interactions and different main effects are simulated. G-GEEc2
is thus the method having the highest power and the lowest false positive rates
to detect interactions for both simulations. G-GEEc2 is however less powerful
in the detection of marginal effects compared to the other methods but shows
the lowest false positive rate. Regarding the four other methods, we can see in
Figure 4.11 that the false discoveries among main effects concern the genes 3
to 10 that were simulated to only have an interaction effect. We can also see
that the PLS based approach shows a good power for only one of the simulated
marginal effects and tends to detect a false interaction between the two first
genes that are supposed to only have marginal effects. Overall these results are
very close to those obtained in the simulation setting C where only data set
sizes and numbers of simulated interactions are different. We can however note
that, except for G-GEEc2, the false positive rates are more important when the
number of variables is larger and when more interaction effects are simulated.
Regarding G-GEEc2, the method presents a larger power to detect interaction
effects as the number of variables in the data set increases but also a larger
number of false positives interactions.
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Figure 4.10: Variation of the number of genes in the data set.

From these results, we can make different conclusions. First, regarding the
individual performance of each method, G-GEEc1 and CCA based methods
seem to be inadequate to detect interactions since interaction effects may be
missed or confounded with marginal signals. The PCA and PLS based ap-
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GGEEc1 GGEEc2 CCA PCA PLS

Gene1…Gene10 {

Gene1xGene2

Gene3xGene4

Gene5xGene6

Gene7xGene8

Gene9xGene10

25 genes
GGEEc1 GGEEc2 CCA PCA PLS

Gene1…Gene10 {

Gene1xGene2

Gene3xGene4

Gene5xGene6

Gene7xGene8

Gene9xGene10

40 genes

Figure 4.11: Discoveries matrices when R2 = 0.7 for the settings where 25 genes
(left) or 40 genes (right) were simulated to constitute the data set. Each square
represents the number of times where a variable was detected as significant over
the total number of iterations.

proaches present better performance but highly depend on the simulation set-
ting. Indeed, the PLS based method is not able to detect an interaction if the
corresponding marginal effects are not present while the PCA based method
can only detect interaction effects when the phenotype simulation setting is
favorable (either when R2 values are high or when phenotypes are simulated
using the PCA model). G-GEEc2 has a better power to detect interaction ef-
fects even if this power tends to drop more quickly with the decrease of the
R2 when phenotypes are simulated with the “Wang Patway” model. Second,
each method seems to preferentially assign a particular type of signal for any
simulated genetic effect. Thus, the PCA based approach seems to have more
abilities to detect the genetic effects as marginal; PLS tends to detect main
and interaction effects for the genes that have marginal effects and fails to de-
tect interactions for genes without main effect; G-GEEc2 tends to more easily
detect interaction effects. We can also note that the capacity to detect inter-
actions increases for G-GEEc2 when the difficulty grows (for small R2 values
or when the number of variables in the data set increases). Third, it can be
noted that according to the phenotype simulation model, the methods perform
differently in terms of power and false discovery rate.

4.3.3 Simulations in a realistic context
In the following, we will only focus on comparing the G-GEEc2, PCA and PLS
based approaches as G-GEEc1 and CCA based methods did not show promis-
ing results to investigate epistasis. Thereafter, G-GEEc2 will be more simply
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referred as G-GEE.

The aim of these simulations is to investigate the performance of the three
methods in a more realistic context. To this end we will consider genotype de-
rived from a real dataset as described in Section 4.1.1. The parameter values
will be the same than the ones fixed at the end of Section 4.3.1. Differences will
concern the number of subjects (here 763) and the number of iterations consid-
ered for each simulation (currently 500). The different simulation settings that
will be investigated are described in Table 4.3 and we will refer to each set-
ting using the corresponding letter. For each simulation setting, we will realize
four sets of simulation depending on the following R2 values: (0.1, 0.2, 0.3, 0.4).
We can note that the two first settings are similar to those presented in the
Table 4.2 in the previous section.

Settings Names
Id Main effects Interaction effects “Wang Pathway”

model
PCA model

1 Genes 1, 2 Genes 1 x 2 A B
2 Genes 1, 2 Genes 3 x 4 C D
3 - Genes 1 x 2 E F
4 Genes 1, 2 - OME
5 - - NE

Table 4.3: Effects simulated in each setting and referring names according to
the phenotype simulation model.

Figures 4.12, 4.13 and 4.14 show results for the three first settings. Figure 4.12
presents the power to detect interactions and marginal effects along with the
false positive rates depending on the R2, while Figure 4.13 and 4.14 show dis-
coveries matrices for each setting when R2 = 0.1 or R2 = 0.4 respectively. In
those figures, the upper row relates to phenotypes simulated using the “Wang
Pathway” model, and the lower row to phenotypes simulated using the PCA
model.

Overall we can see that the PLS based method favors the detection of marginal
effects over interactions. Indeed, we can first see that the power of PLS based
method to detect marginal effects is always greater to its power to detect in-
teractions in the two first settings (Figure 4.12(A, B, C, D)). Secondly, in the
third setting, where only an interaction effect is simulated, the PLS based
method detects the genetic signal predominantly as marginal (Figure 4.13(E,
F) and 4.14(E, F)) what explains the high rate of false positives among main
effects depicted in the Figure 4.12(E,F). Third, we can also see this inclination
for marginal effects in the second setting, where different marginal and inter-
action effects are present. Indeed, the power to detect interactions is almost
null for all R2 values (Figure 4.12(C, D) and the genetic signal for genes 3
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Figure 4.12: The figures show the power to detect marginal or interaction
effects along with the false positive rates of the three methods depending on
R2. The panels A, B, C, D, E, and F refer to the different simulation settings
described in Table 4.2.
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Figure 4.13: Discoveries matrices when R2 = 0.1 for each simulation settings
A, B, C, D, E, and F described in Table 4.2. Each square of each matrix
represents the number of times where a variable was detected as significant
over the total number of iterations.

and 4 that is supposed to be an interaction is falsely detected as two marginal
effects (Figure 4.13(C, D) and 4.14(C, D)). However we can also note, as in
the previous section, that the PLS based method tends to assign both main
and interacting effects for the genes that are simulated with marginal effects.
We observe this phenomenon in the second simulation setting where the false
positive rate for interactions is close to 0.4 for all R2 values (Figure 4.12(C, D)
and concerns genes that are simulated to only have marginal effects (Figure
4.13(C, D) and 4.14(C, D)). In comparison with the previous section where
simulations were realized on simulated genotypes, we can see that the main
difference for the PLS based method lies in the attribution of marginal signal.
Power to detect main effects and false positive rate for main effects are more
important in the current section where genotypes derive from a real data set
(Figure 4.8 and Figure 4.12). This better power to detect marginal effects can
be explained by the fact that the tendency of PLS to detect only one of the two
marginal effects is less pronounced. The higher rate of false positives among
main effects may also be explained by the fact that in the second setting of
the previous section, PLS was not able to detect any signal for the two genes
simulated as having an interaction (gene 3 et gene 4) whereas when the geno-
types come from a real data set, the method detects the interaction signal as
marginal.
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Figure 4.14: Discoveries matrices when R2 = 0.4 for each simulation settings
A, B, C, D, E, and F described in Table 4.2. Each square of each matrix
represents the number of times where a variable was detected as significant
over the total number of iterations.

When phenotypes are simulated using the “Wang Pathway” model, PCA tends
to easily detect and assign marginal effects, like PLS based method. Thus, the
method has a good power to detect marginal effects but also tends to show
false positives among main effects when the simulated interactions do not also
present marginal effects (Figure 4.12(C, E)). However, PCA presents a better
power to detect interactions than PLS. Indeed, in almost all settings, PCA
is able to more effectively detect the interaction effects, even if its power de-
creases when the R2 values decrease (Figure 4.12). In the second setting, PCA
method also tends to detect false positives among interactions and main effects
but contrary to PLS, the false discoveries among interactions concern couples
of genes that have been simulated either with a marginal effect or in inter-
action with another gene and not mainly between gene 1 and gene 2 as PLS
tends to detect (Figure 4.13(C) and 4.14(C)). In comparison to the previous
section and contrary to the PLS based method, the ability of PCA to detect
marginal signal is less important in the current section. The power to detect
marginal effects and the false positive rate among main effects are both less
important (Figure 4.8 and Figure 4.12). However, when the phenotypes are
simulated using the “Wang Pathway” model, the PCA based method tends to
more easily attribute interaction signals. Indeed, we observe that power and
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false positive rate among interactions in the second setting are slightly higher.
The good performance of the PCA based method when phenotypes are sim-
ulated using the PCA model are still considerable when using real genotype
data because of the similarities between the simulated and estimation model
but are however slightly smaller than when using simulated genotypes.

Contrary to PLS and PCA based methods we can see than G-GEE favors the
detection of interactions over marginal effects. Indeed the method presents a
better power to detect interactions than PLS and PCA based methods in al-
most all simulations even if its capacity to detect the interactions simulated
is less important in the second setting (Figure 4.12). The false positive rates
among interaction in the second simulation setting are also more important
for G-GEE than for the two other methods. As for PCA the false discoveries
among interactions concern couples of genes that have been simulated either to
have a marginal effects or to be in interaction with another gene and not mainly
between gene 1 and gene 2 as done by PLS (Figure 4.13(C) and 4.14(C)).
Regarding marginal effect G-GGE is less efficient than PLS and PCA but also
presents the smallest false positive rate among main effects (Figure 4.12). Like
the PCA based method, G-GEE tends to detect and assign interaction ef-
fects more easily but is less efficient regarding marginal effects when using real
genoptypes than when using simulated ones. Indeed, in the first simulation set-
ting the power to detect interactions is higher and does not present a U-shaped
form as in the previous section (Figure 4.8(A) and Figure 4.12(A)). The false
positive rates among interactions are also more important when the genotypes
derive from a real data set in the second simulation setting (Figure 4.8(C) and
Figure 4.12(C)). Conversely, and like PCA, the ability of G-GEE to assign
marginal effects (either true or false) is less pronounced when real genotypes
are used. Finally, the contrast between the type of effects detected by G-GEE
according to the values of R2 (tendency to assign marginal effect for large R2

values and interaction effects for smaller ones) exists but is less marked when
the genotypes come from a real data set.

In the last two settings presented in Table 4.3, we investigate the performance
of the three methods when no interaction effect is simulated. In the fourth set-
ting, only two main effects for gene 1 and gene 2 were simulated while in the
fifth one, none effect was present. Figure 4.15 shows the results for these two
settings. The discoveries matrix on the left corresponds to the setting where
only two main effects are simulated. We remark that all methods successfully
identify the main effect, PCA and PLS doing so with a higher power. False
detections corresponding to the respective interaction effects are observed for
G-GEE, and to a lesser extent for PLS. These results concord with the ob-
servations already made for the three methods. G-GEE tends to detect the
signal of simulated effects as an interaction while PLS tends to both assign
main and interaction effects for the two marginal simulated effects. The PLS
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Figure 4.15: Discoveries matrices for R2 = 0.4 when only main effects are
simulated for gene 1 and gene 2 (left), and when no effects are simulated (right).
Each square represents the number of times where a variable was detected as
significant over the total number of iterations.

based method also tends to better detect the first marginal gene over the two.
The figure on the right corresponds to the setting where no specific effects are
simulated and the result shows that all three methods perform well with very
few false detections.

Comparison of execution times required to model interactions and to fit Group
LASSO for the five first settings of the realistic simulation study are pre-
sented in Figure 4.16. In all settings, estimating the coefficients with the Group
LASSO is more computationally expensive than constructing the interaction
variables. We can note that the time to compute Group LASSO is particularly
high when none effect is simulated. G-GEE and PCA are quite similar in terms
of computation time, whereas in some settings PLS has a slightly greater ex-
ecution time than other methods. Note that the time required by G-GEE for
constructing the interaction variables varies according to the number of SNPs
that constitute each gene. We can also note that the time to compute Group
LASSO tends to increase when the R2 values decreases and the problem be-
comes more difficult.

In conclusion we can note that both the PCA and PLS based methods tend to
favor the detection of marginal effects over interactions. Both methods have a
good power to detect the simulated main effects in all settings but also tend to
assign marginal signals to the genes that are simulated with interaction. The
two approaches differ however in their capacity to detect interactions. PLS
tends to assign interaction signals to the genes that are simulated as marginal
(even when the corresponding interaction is not simulated) but the method
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Figure 4.16: Execution time Median of the execution time to model interac-
tion and to fit Group LASSO for the three first settings.
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is not able to detect pure interactions. PCA seems to be more flexible on
this hypothesis and do not assign interaction effects to the genes simulated as
purely marginal. Contrary to these two methods, G-GEE tends to favor the
detection of interactions over marginal effects. The power of G-GEE to detect
interactions is almost always higher than for PLS and PCA but the method
also tends to detect marginal simulated effects as interactions.

4.3.4 Simulations with binary phenotypes
In this simulation study the aim is to evaluate our method G-GEE with binary
phenotypes. In particular, we will compare the performance of G-GEE with
other methods that have specifically been developed to detect interactions
between genes in a case control study design. We thus chose to compare G-
GEE with some of the methods presented in Section 2.3.3 that have been
implemented in the R package GeneGeneInteR (GGI) [Emily et al., 2017] and
that are listed below:

• Tests outside a regression framework:
– CLD: Composite Linkage Disequilibrium method [Rajapakse et al.,

2012]
– Test based on aggregating SNP-SNP level tests p-values:
∗ minP: Minimum p-value test [Emily, 2016]
∗ GATES procedure [Li et al., 2011b]
∗ tProd: Truncated product method [Zaykin et al., 2002]
∗ tTS: Truncated tail strength test [Jiang et al., 2011]

– Co-association test
∗ CCA: Canonical Correlation-based U-statistic model [Peng et al.,

2010]
∗ PLSPM: Partial Least Squares Path Modeling approach [Zhang

et al., 2013]
• Regression based approaches

– PCA: Principal Component Analysis based method [Li et al., 2009]
• Entropy based method

– GBIGM: Gene Based Information Gain Model [Li et al., 2015]

For all the simulations presented in this section, the value of the parameters
will be the same as the ones fixed at the end of Section 4.3.1. The difference
will concern the number of iterations considered for each simulation currently
fixed to 500.
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Settings Names
Id Main effects Interaction effects Real data Simulated

genotypes
1 Genes 1, 2 Genes 1 x 2 Ar As
2 Genes 1, 2 Genes 3 x 4 Cr Cs
3 - Genes 1 x 2 Er Es

Table 4.4: Effects simulated in each setting and referring names according to
the type of genotype considered.

We will first present the results of the comparison of G-GEE with the Mini-
mum p-value test (minP) and the PCA based method implemented in GGI. We
will consider binary phenotypes simulated using the “Wang Pathway” model
(Section 4.1.2) and will compare the performance of the methods according to
the type of genotype considered which will be either simulated or derived from
a real data set (in this latter case the data set considered is the same that
the one presented in the previous Section 4.3.3). The three following scenarios
considered are presented in Table 4.4.

Results of these three scenarios are presented in Figure 4.17. Overall we can see
than G-GEE tends to perform better to detect interaction than the two oth-
ers, particularly when genotypes come from real data. We can also note that
G-GEE is more able to assign interactions when the genotypes derive from
a real data set and to assign marginal effects when genotypes are simulated.
We thus notice that in the second setting the discoveries matrix Cr indicates
more false positives among interactions than the discoveries matrix Cs. These
false discoveries concern couples of genes that have been simulated to present
either a marginal effect or an interaction effect with another gene. The power
of minP to detect interactions when genotypes are simulated is similar to the
power of G-GEE. When simulations are realized using genotypes from a real
data set the power of minP is almost null but this is mainly due to the fact
that the method was not able to complete and to yield a result for a large
number of iterations (400 in the simulation Ar). In those cases, we consider
that the methods did not make any discovery and we use the usual estimators
for the power and false positive rates over all iterations. The same computa-
tional problem occurred with PCA but to a lesser extent.

We can remark that the performance of G-GEE in the current results, where
phenotypes are binary, are similar to the results obtained for high values of R2

when phenotypes were simulated as continuous with either simulated genotypes
(Figure 4.9(A, C)) or real genotypes (Figure 4.14(A, C, E)). As a reminder,
we noticed in the two previous sections that G-GEE tends to assign marginal
signals for large R2 values and interaction signals for smaller ones. When bi-
nary phenotypes are simulated, it is not possible to control the value of the
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Figure 4.17: Discoveries matrices for each simulation settings Ar, As, Cr, Cs,
Er, and Es described in Table 4.4. Each square of each matrix represents the
number of times where a variable was detected as significant over the total
number of iterations.
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coefficient of determination R2. However, in our results we can note that the
tendency to assign marginal signals to the simulated genetic effects is more
pronounced in the actual section when phenotypes are binary.
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Figure 4.18: Discoveries matrices for simulation settings Ar and Cr described
in Table 4.4 for a larger number of methods proposed in the package Gene-
GeneInteR. Each square of each matrix represents the number of times where
a variable was detected as significant over the total number of iterations.

We also investigate the performance of other methods proposed in the package
GeneGeneInteR for the two first settings with real genotypes. The results are
presented in the Figure 4.18. Overall we can see that G-GEE presents a bet-
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ter power to detect the simulated interaction in both settings over the other
approaches. The lack of power of the other methods may be explained by the
fact that for several iterations, some of the methods were not able to complete
a final result.

Finally, we also consider a fourth scenario where binary phenotypes were sim-
ulated following the model used by Emily [2016]:

ln
(

pi
1− pi

)
= β0 +

∑

rs

∑

(j,k)∈Ω
γrsjkX

r
ijX

s
ik, (4.3)

where Ω is a set of selected SNP pairs and γrsjk the interaction effect size for
the SNPs (j, k) that respectively belong to the genes (r, s). The coefficient
associated to each pair is defined as follows:

γrsjk = log(τ)
16 |log10(MAF(Xr

j)×MAF(Xs
k))|, (4.4)

where MAF(Xr
j) is the minor allele frequency for the SNP j of gene r and

MAF(Xs
k) for the SNP k of gene s.

In this scenario we simulated one interaction effect between gene 1 and gene
2 with five causal SNP pairs: X1

1X2
1, X1

2X2
2, . . . , X1

5X2
5. We set τ = 2.5 and

defined a MAF=0.1 for each causal SNP.

Figure 4.19 shows the lack of ability of all methods to detect the simulated
interaction.

4.3.5 Percentages of R2 attributable to interaction and
main effects respectively

In order to better interpret the results obtained in the three previous sec-
tions (4.3.2, 4.3.3 and 4.3.4), notably regarding the distinction of main and
interaction signals, we investigate the relative role of each type of effect in
the variability of simulated phenotypes. Thus, for each simulated data set, we
compute the proportion of R2 (or R2

McF in the case of binary phenotype) that
could be attributed to interaction (pI) and main effects (pM) as described in
section 4.1.2. In the tables 4.5, 4.6, 4.7 and 4.8 we present the average pI and
pM obtained for the simulations presented in the discoveries matrices of the
three previous sections.

For most settings, the pI depends on the number of simulated effects. With
one interaction and two main effects the R2 part attributable to interaction
effects is around 34% (Table 4.5(B, C, D) for simulated genotypes and Table
4.5(C, D) for real genotypes). For both settings wherein a larger number of
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Figure 4.19: Discoveries matrix when phenotype are simulated following the
model of Emily [2016]. Each square of each matrix represents the number of
times where a variable was detected as significant over the total number of
iterations.

Genotypes
Settings A B C D

Simulated
R2 0.7 0.05 0.7 0.05 0.7 0.1 0.7 0.1
pI 0.98 0.92 0.33 0.33 0.34 0.34 0.34 0.33
pM 0.99 0.96 0.66 0.67 0.67 0.66 0.67 0.67

Real data
R2 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1
pI 0.94 0.93 0.52 0.50 0.33 0.34 0.33 0.34
pM 0.99 0.98 0.78 0.78 0.67 0.66 0.67 0.66

Table 4.5: Average proportion of R2 attributable to interactions and main
effects, by setting when genotypes are either completely simulated or derived
from a real data set (simulations presented in section 4.3.2 and in section 4.3.3)
A, B, C, D refer to the different simulation settings described in Table 4.2 or
Table 4.3.
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Genotypes
Settings 25 G 40 G

Simulated
R2 0.7 0.7
pI 0.67 0.67
pM 0.34 0.34

Table 4.6: Average proportion of R2 attributable to interactions and main
effects, when genotypes are completely simulated and when we vary the number
of genes (25 or 40 genes) considered in the simulated data set. (simulations
presented in section 4.3.2).

Genotypes
Settings E F OME

Real data
R2 0.4 0.1 0.4 0.1 0.4
pI 1 1 1 1 0
pM 0 0 0 0 1

Table 4.7: Average proportion of R2 attributable to interactions and main
effects, by setting when genotypes come from a real data set (simulations
presented in section 4.3.3). E, F and OME refer to the different simulation
settings described in Table 4.3.

variables is considered in the data sets (Table 4.6), the average pI is 67% be-
cause we consider four interaction effects for only two main effects. Finally, as
expected, when only interaction effects are simulated, the average pI is 100%
(Table 4.7(E, F)) and 0% when only main effects are simulated (Table 4.7
(OME)). However, the R2 distribution between main and interaction effects is
not distinguishable in the setting where the phenotype is simulated using the
“Wang Pathway” model with the same main and interaction effects. The pI
and pM values are all above 90% (Table 4.5(A)). When real genotypes are con-
sidered in the simulations, the R2 distribution is also not well divided between
main and interaction effects when the phenotype is simulated under the PCA
model, though pM is still higher than pI (Table 4.5(B) for real data).

Genotypes
Settings A C E

Simulated pI 0.97 0.23 1
pM 0.99 0.60 0

Real data pI 0.94 0.27 1
pM 0.98 0.55 0

Table 4.8: Average proportion of R2 attributable to interactions and main ef-
fects, by setting when phenotypes are binary (simulations presented in Section
4.3.4). A, C, E refer to the different simulation settings described in Table 4.4.
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Table 4.8, presents the average pI and pM obtained for each simulation when
binary phenotypes are considered using the McFadden’s R-square R2

McF . The
conclusions of these results are similar to those obtained with continuous phe-
notypes. We can see that the proportion of the R2 relative to marginal and
interaction effects cannot be distinguished when the same genes are considered
for both effects: all the proportions are above 90%. When main and interaction
effects concern distinct genes we can see that pM is superior to pI as two main
effects are simulated for only one interaction and that pI = 100% when only
interaction effects are simulated.

4.3.6 Investigation of the use of non linear methods to
represent interactions

In the previous section we have seen the good performance of G-GEE over var-
ious other modeling approaches. However, one limit of this method lies in the
size of the considered genes. Indeed, G-GEE needs the calculation of the ma-
trix F rs, that contains all pairwise products of SNPs for each couple of genes,
what could be computationally challenging for very large genes. In order to
bypass this problem we chose to investigate new manners to construct interac-
tion variables by using non linear approaches. In this last section, we present
the results obtained when comparing G-GEE, PCA and PLS with these new
approaches.

We use genotypes derived from a real data set (corresponding to the one pre-
sented in Section 4.3.3). We consider the same parameters values than the ones
fixed at the end of Section 4.3.1 except for the number of subjects (763), the
number of iterations (500) and will consider only one value for the coefficient
of determination R2 = 0.4.

We consider the two following scenarios:

Settings Names
Id Main effects Interaction

effects
Real data

1 Genes 1, 2 Genes 1 x 2 A
2 Genes 1, 2 Genes 3 x 4 C

Table 4.9: Effects simulated in the two settings

In those simulations we split the subjects of the data set in two equal parts.
The first part of the data set is used to construct interactions variables and to
estimate the coefficients with the Group LASSO. The second part is used in the
cleaning Ridge to compute permuted p-values for each group. We investigated
the use of Random Forest (RF), Boosting (BOOST), Support Vector Machine
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(SVM) and Neural Network (NN). For each couple of genes we model an in-
teraction variable by the predictions obtained using each method. The details
of the construction of interaction variables using these non-linear methods are
presented in Section 3.3.2.

Regarding Random Forest, we construct two types of interaction variables, the
first one using the predictions obtained when constructing a Random Forest
on the SNPs belonging to both genes and the phenotype (Xr,Xs,y) and the
second one using the predictions obtained when constructing a Random Forest
using the phenotype and the matrix of all pairwise products (F rs,y). We will
refer to the first strategy as RF and the second one as RF_F. For Support
Vector Machine, we consider the data (Xr,Xs,y) and use four different ker-
nels, linear kernel (SVMlin), polynomial kernel of degree d = 3 (SVMpol) or
d = 5 (SVMpol5) and radial basis (SVMrad).

Results of the two settings are presented in the Figure 4.20. We can see that
the methods give different results in the detection of simulated effects, but do
not seem to outperform G-GEE overall. We can first note that Random Forest
is not convincing for both settings. When using the predictions calculated on
the couple of genes (Xr,Xs) no interaction was detected and all the signal was
detected as marginal. When the predictions are calculated on the matrix F rs,
RF based method is able to assign interaction signals but with a large number
of false positives. Regarding SVM based methods, we observe a good perfor-
mance to detect the interactions when using the linear kernel in the setting
A. This good performance is however nuanced by the fact that the method
generates an important amount of false discoveries among interactions when
marginal effects are simulated without the corresponding interaction. We can
also point out that the method is not able to detect any marginal signal. The
simulated main effects are detected as interactions and with a higher frequency
than the real simulated interaction. Radial basis kernel seems to act in a sim-
ilar way to linear kernel but with less power. When using a polynomial kernel
(degree d = 3 or d = 5), the simulated interaction can be detected when the
corresponding main effects are also present but with a not negligible amount
of false discoveries. Overall the use of polynomial kernels tends to favor the
detection of marginal effects over interactions. We can remark that Boosting
tends to present a low power to detect marginal or interaction effects and tends
to generate false discoveries when different genes are simulated for both types
of effects. Finally, we were able to detect interaction effects when using Neural
Network but with a certain number of false discoveries. As when using SVM
with linear kernel, the simulated main effects are detected as interactions and
with a higher frequency than the real simulated interaction.

Figure 4.21 presents the execution time of each method to compute interac-
tion variable and to estimate coefficients with Group LASSO. Overall we can
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Figure 4.20: Discoveries matrices for the two simulation settings A and C.
Each square of each matrix represents the number of times where a variable
was detected as significant over the total number of iterations.
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Figure 4.21: Median of the execution time to model interaction and to fit
Group LASSO for the two settings.

see that the estimation of the coefficients is the longest step in the procedure
except for NN based method. We can also note that the time to estimate co-
efficients is particularly time-consuming for RF_F and PLS and increases in
the second setting for PLS, G-GEE, PCA, RF and RF_F.

In a last simulation we investigated the performance of G-GEE, PCA and
NN based methods when the part of the phenotype explained by the marginal
effects is first removed from the phenotype variable using the two same settings.

The model to estimate becomes the following:

y− ŷME = XTβ +ZTγ + ε.

Here ŷME corresponds to the prediction obtained using the Group LASSO on
the matrix of all SNPs X:

ŷME = XT β̂GL.

Figure 4.22 shows that G-GEE and PCA based methods detect the interaction
for only a small number of iterations. We can conclude that a part of the
interaction was captured by the model with only marginal effects.
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Figure 4.22: Discoveries matrices for the two simulation settings A and C.
Each square of each matrix represents the number of times where a variable
was detected as significant over the total number of iterations.

4.4 Investigation of two pathologies
To illustrate the use of our proposed framework, we applied the G-GEE, PLS
and PCA based methods on two datasets related to ankylosing spondylitis and
Crohn’s disease.

4.4.1 Quality controls and filtering
For each data set, we first realized a data quality control (see Section 1.2.4)
and excluded the markers and subjects based on the following criteria:

• Markers filtering:

– SNPs call rate ≤ 95%,
– MAF ≤ 5%,
– Deviation from the Hardy Weinberg Equilibrium in unaffected sam-

ples (p < 1× 10−5) ,
– Marker duplicates. If the duplicates are not equal, one of the mark-

ers is randomly chosen.
– SNPs not belonging to one and unique gene.

• Subjects filtering:

– Sample call rate ≤ 93%,
– Verification of the presence of duplicates.
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For the two data sets, missing values were replaced by the median value of
the corresponding markers on all subjects. Gene affiliation of each marker
was obtained either using the NCBI2R R package [Melville, 2012] or via the
application programming interface for NCBI databases using Biopython. We
considered only SNPs located within a single gene in order to form groups of
genes without overlap.

We investigated the presence of epistasis using the three approaches present-
ing the best performances in the simulations studies namely, G-GEEc2 (referee
as G-GEE), PLS and PCA based approaches. When using PCA and PLS we
used two components to define interaction variables. For each analysis, sub-
jects were randomly split in two groups of equal size and we used the same
partition for the three methods. The first half of the data was used to construct
the interaction variables and to estimate the Group LASSO coefficients. The
second half of the sample was used for the cleaning stage to compute permuted
p-values for each group. The number of permutations B to estimate p-values
for each group was fixed to 1000.

4.4.2 Ankylosing spondylitis

Presentation

Ankylosing spondylitis (AS) is a common form of inflammatory arthritis pre-
dominantly affecting the spine and pelvis. It occurs with a prevalence of 0.1%
to 1.4% depending on the considered population [Tsui et al., 2014]. Genetic
factors account for more than 90% of the risk of susceptibility to AS. Hu-
man leukocyte antigen (HLA) class I molecule HLA B27, was the first genetic
risk factor identified as associated with ankylosing spondylitis in the 1970’s
[Schlosstein et al., 1973; Woodrow and Eastmond, 1978] and remains the most
important risk locus for this pathology. Despite the strong association only a
small portion of HLA-B27 carriers develop the disease. Furthermore, studies
in families indicate that less than 50% of the overall genetic risk is due to
HLA-B27, what suggests that other genetic factors are involved [Thomas and
Brown, 2010]. HLAB-27 is a gene belonging to the Major Histocompatibility
Complex (MHC) region which is one of the most dense region of the genome.
The MHC is located on the short arm of chromosome 6 and controls a major
part of the immune system. A number of updated reviews on AS genetics iden-
tified new MHC associated genes as well as genes outside of the MHC region
[Tsui et al., 2014; Reveille et al., 2010; Brown et al., 2016]. Additionally, several
studies showed that ERAP1 variants influence risk of ankylosing spondylitis in
HLA-B27 positive but not negative individuals, suggesting an epistatic effect
of both genes [Cortes et al., 2015; Evans et al., 2011].
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Figure 4.23: Manhattan plot of the GWAS realized for ankylosing spondylitis.
Significant SNPs after Benjamini-Hochberg correction are highlighted in blue.

Data set

The dataset regarding ankylosing spondylitis consists of the French subset of
a large study of the International Genetics of Ankylosing Spondylitis (IGAS)
study [Cortes et al., 2013]. For this subset, unrelated cases were recruited
through the Rheumatology clinic of Ambroise Paré Hospital (Boulogne-Billancourt,
France) or through the national self-help patients’ association: “Association
Française des Spondylarthritiques”. Population-matched unrelated controls were
obtained from the “Centre d’Etude du Polymorphisme Humain”, or were re-
cruited as healthy spouses of cases. The protocol was reviewed and approved
by the Ethics committee of the Ambroise Paré hospital. All participants gave
their informed consent to the study.

The data contain 763 individuals (357 cases, 401 controls and 5 without as-
signed phenotype) genotyped for 118,826 SNPs with the Immunochip technol-
ogy of Illumina. The Immunochip microarray is a microarray that has been
specifically designed for the study of autoimmune diseases such as psoriasis
or ankylosing spondylitis [Cortes and Brown, 2011]. It focuses on particular
genome regions thought to be related to this type of diseases.

After pre-processing, 51,287 SNPs belonging to 6,611 genes are retained in the
analysis for 758 individuals (357 cases, 401 control).

Analysis

We first realized a GWAS in order to identify markers marginally associated
with ankylosing spondylitis. These univariate analyses allowed us to identify
637 significantly associated SNPs, a large number of them being located on
chromosome 6 (Figure 4.23). Among those 637 SNPs, 188 belong to a single
gene for a total number of 62 genes. We also decided to consider 29 other genes
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and humans to unravel how a  noncoding single-nucleotide 
polymorphism (SNP) can influence the disease process.27 
Intriguingly, this FOXO3 variant (rs12212067), which 
regulates cytokine production in monocytes, was not 
associated with susceptibility to the rheumatoid arthritis 
or Crohn’s disease.

It is established that IL-23 drives the differentiation of 
CD4-positive Th17 cells, which produce IL-17. IL-17 in 
turn can facilitate the production of other factors (such as 
IL-6, IL-8, TNF, chemokines, matrix metalloproteinases, and 
receptor activator of nuclear factor B ligand) from a wide 
range of cell types.28 A French SpA study illustrated that 
variants at loci in the IL-23/Th17 pathway influence expres-
sion levels of genes involved in the differentiation of Th17/ 
Th1 cells, and it is likely that the pathological outcome is 
dictated by combinatorial assortments of multiple variants.29 
A comprehensive discussion on how IL-23/IL-17 pathways 

impact on AS pathogenesis is beyond the scope of this 
review. An excellent review on this aspect has just been 
published.28

Role of aminopeptidases
In addition to ERAP1 and ERAP2, two other aminopeptidases 
(LNPEP and NPEPPS) are associated with AS,23 reiterating 
the importance of antigen presentation in AS pathogenesis. 
Both protective and susceptible ERAP1 variants associated 
with AS have been identified. The relative attributable risk of 
ERAP1 to AS is about 25%, whereas that of HLA-B27 is about 
50%. These two genes combined provide the two most pow-
erful disease risk factors to AS. Intriguingly, the association 
of ERAP1 is restricted to HLA-B27-positive AS patients.25  
One recent functional study showed that ERAP1 variants 
affect HLA-B27 antigen presentation and stability in vivo.30 
Protective variants lead to less ERAP1 activity, and less 
efficient trimming of HLA-B27 ligands. Another study sup-
ported the notion that AS-associated ERAP1 variants alter 
the composition and length of HLA-B27 ligands.31 A more 
in-depth review on the role of ERAP1 in AS pathogenesis 
will be discussed in later sections.

ERAP2 is unique to humans, and does not exist in 
mice. However, a high-frequency variant, when present 
in homozygosity (about 25% of the population), results 
in the absence of ERAP2 protein in these individuals. In 
ERAP2-deficient human B cells, surface MHC-I expres-
sion is reduced.32 It remains unclear whether the absence of 
ERAP2 might alter/modulate antigen presentation in these 
individuals, especially patients with such diseases as AS 
and Crohn’s disease in which disease-associated ERAP2 
variants exist. Intriguingly, one ERAP2 variant (rs2549782) 
confers natural resistance to human immunodeficiency 
virus-1 infection.33 Results from the most recent GWAS 
indicated that ERAP2 variants are associated with AS in 
HLA-B27-negative cases.25

Despite substantial sequence homology, similar overall 
domain organization and structures between ERAP1 and 
ERAP2, the N-terminal peptide specificities between these 
two aminopeptidases are quite different, as explained by their 
crystal structures.34 We showed that an ERAP1 ERAP2 hap-
lotype (rs27044[G] rs30187[T] rs2549782[T]) is associated 
with familial AS.35 A recent study using sequencing haplo-
types in 20 individuals showed that this haplotype occurs 
naturally.36 Amino acid variants coded by ERAP2 rs2549782 
(N392K) alter both the specificity and activity of ERAP2. 
Amino acid variants coded by ERAP1 rs27044 (Q730E) and 
rs30187 (K528R) affect peptide-trimming activity. To date, 

Table 1 Summary of ankylosing spondylitis-susceptibility genes 
identified by genome-wide association studies

RUNX3 Runt-related transcription factor 3
IL23R Interleukin 23 receptor
IL12R 2 Interleukin 12 receptor, 2
GRP25 G-protein-coupled receptor 25
KIF21B Kinesin family member 21B
PTGER4 Prostaglandin E receptor 4 (subtype EP4)
ERAP1 Endoplasmic reticulum aminopeptidase 1
ERAP2 Endoplasmic reticulum aminopeptidase 2
LNPEP Leucyl/cystinyl aminopeptidase
IL12B Interleukin 12B
CARD9 Caspase recruitment-domain family member 9
LT R Lymphotoxin -receptor (TNFR superfamily, member 3)
TNFRSF1A Tumor-necrosis factor-receptor superfamily member 1A
NPEPPS Aminopeptidase puromycin-sensitive
TB BP1 TNFR-associated factor family member-associated 

nuclear factor- B-binding kinase 1-binding protein
TBX21 T-box 21
IL6R Interleukin 6 receptor
FCGR2A Fc fragment of immunoglobulin G, low-affinity IIa, 

receptor (CD32)
UBE2E3 Ubiquitin-conjugating enzyme E2E 3
GPR35 G-protein-coupled receptor 35
NKX2-3 NK2 homeobox 3
ZMIZ1 Zinc finger, MIZ type-containing 1
SH2B3 Src homology 2B adaptor protein 3
GPR65 G-protein-coupled receptor 65
IL27 Interleukin 27
SULT1A1 Sulfotransferase family cytosolic 1A
TYK2 Tyrosine kinase 2
ICOSLG Inducible T-cell costimulator ligand
EOMES Eomesodermin
IL7R Interleukin 7 receptor
BACH2 BTB and CNC homology 1, basic leucine-zipper 

transcription-factor 2
Abbreviation: CD, classification determinant.

Figure 4.24: Summary of ankylosing spondylitis-susceptibility genes identified
by GWAS from Tsui et al. [2014]
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that were identified as having a main effect in previously published GWAS
(Figure 4.24). Epistasis was investigated among those 91 genes and we detected
the following effects:

Method Variables
G-GEE NKX2-3 x HCG27
PCA HLA-B

HCP5
HLA-B x HCG27

PLS HLA-B
EOMES x HCP5
IL1R2 x MICB

ZFP57 x LOC101929772
TRIM31 x HCG26

We can note that the three methods identified interaction effects but for dif-
ferent couples. In addition, none of them confirmed the previously identified
interaction between ERAP1 and HLA-B. Only the PCA and the PLS based
approaches detect marginal effects, both identify HLA-B and PCA addition-
ally detect HCP5, a MHC gene. Among the genes showing interaction effects
NKX2-3, EOMES and IL1R2 correspond to genes already identified as as-
sociated with ankylosing spondylitis while HCG27, HCG26, HLA-B, HCP5,
MICB, ZFP57 and TRIM31 are genes located in the MHC which is an impor-
tant region for ankylosing spondylitis.

4.4.3 Crohn’s disease
Presentation

Crohn’s disease (CD) is one of the subtypes of Inflammatory Bowel Disease
(IBD) with ulcerative colitis (UC). Both pathologies present a similar inci-
dence (10-30 per 100,000 in Europe and North America) [Pascal et al., 2017]
and are characterized by a chronic inflammation of the gastrointestinal tract.
However, they differ in the location and type of lesions. CD can affect any part
of the intestine (from the mouth to the anus) and is characterized by chronic
and discontinuous transmural lesions of the gut wall. In UC, inflammation is
confined to the colon and rectum, and lesions are continuous and superficial
[Mathew and Lewis, 2004]. Although the etiology of Inflammatory Bowel Dis-
ease is not completely understood, there is recognition that IBD occurs at the
intersection of three distinct spheres, namely genetic, external environment
and gut microbiota with no factor sufficient in itself for the development of the
disease [Ananthakrishnan, 2015]. Various external environment influences are
suspected to be related to IBD and have also been suggested by the increase of
IBD incidence along with the industrialization of societies [Molodecky et al.,



126 Chapter 4. Evaluation and application of interaction modeling

2012]. Microbiome analysis has demonstrated the key role of the interface be-
tween the immune response and the gut microbiota and a recent study showed
that CD and UC are two distinct subtypes of IBD at the microbiome level
[Pascal et al., 2017].

Concerning genetic factors, the first Crohn’s disease associated gene, NOD2
(also known as CARD15), was described in 2001 [Hugot et al., 2001; Ogura
et al., 2001] and was followed by IBD5 the same year [Rioux et al., 2001]. A
large number of associated loci have subsequently been identified in various
studies [Jostins et al., 2012; Franke et al., 2010; Wellcome Trust Case Control
Consortium, 2007; Barrett et al., 2008]. Considering that the identified genes
associated with Crohn’s disease present only modest individual effects, the ex-
istence of potential gene-gene interactions has also started to be investigated
[Achkar and Fiocchi, 2009]. Possible interactions between NOD2 and TLR pro-
teins have been suggested in some studies [van Heel et al., 2005; Török et al.,
2009; Martinez-Chamorro et al., 2016]. Török et al. [2009] thus provide evi-
dence for genetic interactions between polymorphisms in TLR9 and NOD2 but
also with other CD-associated variants as IL23R and DLG5 while Martinez-
Chamorro et al. [2016] detected an epistatic interaction between the genes
NOD2 and TLR4. In 2011 Abad et al. [2011] used the MDR method to study
the interaction between NOD2 and TLR10 but the interaction analysis revealed
no statistical epistasis, suggesting different signaling pathways for both genes.
Possible interactions between CTLA4 with variants in NOD2 and IL23R genes
were also observed [Hradsky et al., 2010] while interactions between IBD5 and
NOD2 [Mathew and Lewis, 2004] or between IBD5, ATGL16L1 and IL23R
[Okazaki et al., 2008] have also been suggested but require further investiga-
tions.

Data set

We applied our approach to the Wellcome Trust Case-Control Consortium
genome-wide association dataset for Crohn disease. The data contains 1949
case for 461,896 SNPs genotyped with the Affymetrix 500K SNP chip. The
control group was constituted of 1500 individuals. After quality contol step,
140,487 SNPs belonging to 17,304 genes were retained for 1500 controls and
1938 cases.

Analysis

Figure 4.25 shows that the 67 SNPs significantly associated with Crohn’s dis-
ease are located all along the genome with some peaks on chromosomes 1, 2,
5, and 16. Among those 67 SNPs, 60 belong to a single gene for a total number
of 32 genes. To look for interactions, we also considered 72 genes identified
as associated with Crohn’s disease in published studies [Jostins et al., 2012;
Franke et al., 2010; Barrett et al., 2008] as well as 6 of the genes suspected of
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Figure 4.25: Manhattan plot of the GWAS realized for Crohn’s disease. Signif-
icant SNPs after Benjamini and Hochberg correction are highlighted in blue.

presenting interactions in the introduction. We end up with a list of 110 genes
to investigate. The results are presented in the following Table:

Method Variables
G-GEE LOC105369715 x STAT1

STAT1 x CD6
PLS IFNGR1 x SBNO2

IRGM x NOD2
PCA IRGM

LOC101929544 x TLR4
BATF x IL10

G-GEE detected two interactions, both of them involving the gene STAT1;
PLS detected two interactions including different genes; PCA detected two in-
teractions and one marginal effect. Most of the effects identified by the three
methods are attributed to genes already known or suspected to be related to
Crohn’s disease such as NOD2, STAT1, CD6, IRGM, IL10, SBNO2 and TLR4.
These genes all play a role in the immunity. For example, STAT1 is involved
in multiple immune system functions, such as the body defense against the
Candida fungus while IRGM provides instructions for making a protein that
helps trigger autophagy in cells infected with certain kinds of bacteria. PCA
was able to detect an interacting effect for the gene TLR4 but not with NOD2,
like it has recently been suggested by Martinez-Chamorro et al. [2016].

In conclusion, the three methods G-GEE, PLS and PCA were able to detect
interactions for both ankylosing spondylitis and Crohn’s disease, but with
different genes. Further examinations will be needed to evaluate the real effect
of these genes.





Discussion

Our primary concern in this thesis was the detection of interaction effects in
the context of the generalized linear model. Through this work we proposed an
original approach with several alternatives to model interactions. We compared
our proposals with other gene epistasis detecting approaches from literature.
We were able to identify possible interaction effects for ankylosing spondylitis
and Crohn’s disease. Our developed approach G-GEEc2, has been implemented
in an R package available on github: https://github.com/vstanislas/GGEE.

Contributions and limitations
The first part of our contribution consists in using a Group LASSO for the esti-
mation of the parameters. In comparison to SNP-SNP interaction approaches,
the group-scale dimension means that considerably fewer interaction variables
need to be considered within a genetic region. Furthermore, resorting to a pe-
nalized regression based framework to estimate the model coefficients allows
to handle a true multivariate approach over a larger number of genes. This re-
duction in problem size makes the detection of interactions between different
genetic regions possible. This penalized framework also extends initial PCA
and PLS proposed gene-scale regression approaches for investigating epistasis.

The second contribution of our work concerns the definition of new types of
interaction variables. Among our two propositions, G-GEEc2 shows good per-
formance to detect interaction effects over all the methods investigated through
various simulation studies. We also note that G-GEEc2 tends to detect and as-
sign interaction effects more easily when simulations were realized using real
genotypes but is less efficient regarding marginal effects. Since the simula-
tion study based on real genotypes is meant to mimic real data structure, we
conclude that G-GEEc2 will be better to detect interaction effects than main
effects.

A limitation of our proposed approach lies in the size of the considered genes
in terms of their number of representative SNPs. Computing the gene Eigen-
Epistasis vector for two genes of size pr and ps requires an n× (prps) matrix to
be computed. To bypass this limit we defined new type of interaction variables
that did not resort on the computation of the matrix Frs by the use of non
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parametric approaches but we did not obtain results that outperformed the
performance of G-GEEc2. Another limitation of our framework is the computa-
tion cost for estimating the coefficients using Group LASSO, which compares
poorly with other methods such as univariate approaches as shown in Section
4.2. Concerning the application of our approach on real data set, as the G-
GEEc2 method is not able to consider all human genes at the same time, it is
necessary to reduce the search space by specifying a limited list of genes. Given
that its power to detect main effects is low, it will be safer to use previously
acquired knowledge of the genetic effects, or to use a pre-processing method
for the detection of main effects. It is however worth noting that our approach
is sensitive to the group definition. Some effects may be not detected anymore
when the list of genes to investigate is modified.

Finally, focusing at a group scale, our proposed approach might be useful as
an initial step but the identified gene interactions will need to be investigated
in more details. A first idea will be to resort to SNP-SNP interaction detection
methods in a second step to provide more accurate information inside the
identified interacting groups. Other possible investigations will be to explore
the biological relations of the identified couples in order to see if the identified
statistical epistasis correspond to interactions at the biological level.

Perspectives
Several methodological improvements of G-GEEc2 could be considered. For
example, we could explore new interaction functions to be plugged into our
framework in order to bypass the gene size limit of G-GEEc2. Another aspect
could be to focus on optimizing the computational cost of the matrix Frs cal-
culation. We also could work on other penalized regressions than the Group
LASSO. Then, an interesting direction could consist in constructing interac-
tion variables and estimating the model parameters at the same time. This
could be done in devising a more complex optimization problem.

Through our simulations studies, we noticed a confusion phenomenon for all
interaction variable modeling approaches when active genes were not simulated
with both main and interaction effects. In that case interaction effects tended
to be detected as marginal while interacting signals tended to be assigned to
single genes, leading to an augmentation of false detections. This phenomenon
reveals the difficulty that all methods encounter in clearly distinguishing the
different types of effects. Future developments could thus aim at resolving the
confusion between interaction and marginal signals.

Other methodological developments may be necessary to better understand
the lack of performance of several approaches tested in the simulation studies.
In particular, it would be interesting to investigate in more details the use of
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machine learning based methods to represent interactions. We could also con-
sider an alternative use of these methods without using the linear model layer
which is a more classical approach.

When using G-GEEc2 it is necessary to specify a list of genes to be considered
for potential interactions. In this thesis, we selected groups of genes to investi-
gate based on the results from univariate analyses or using genes either already
identified or suspected to present a link in the literature with the considered
disease. As presented in Section 2.3.1, a variety of methods can be used to fil-
ters genetic markers to be considered for possible interactions. One promising
idea could be to use biological knowledge and select genes belonging to a same
pathway or encoding for particular proteins involved in relevant interactions
but also to use data mining filtering as TuRF or SURF [Moore and White,
2007; Greene et al., 2009] and thus limit biological bias.

Furthermore, other grouping strategies could be investigated. Through this
work we presented results when groups of SNPs correspond to genes, but we
could also group SNPs in LD blocks using the clustering approach proposed by
Dehman et al. [2015]. The use of LD blocks may be an interesting perspective in
order to explore the presence of interactions in larger genomic regions since LD
blocks can comprise several genes. For example, for the investigated datasets,
many genes were only composed of a small number of genetic markers (less
than 5 SNPs). Considering LD blocks would allow to group correlated genes
in a unique set and to take into account SNPs that are located in intergenic
regions.
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1) Introduction

The GGEE package implements the “Gene-Gene Eigen Epistasis” approach to detect epistasis at the gene level
in genome wide association studies (GWAS). This approach compute interaction variables for each gene pair
then uses a penalized regression method based on group lasso to select the significant main or interaction
effects.

The two main functions of this package are BuiltEpiVar and GLmodel. BuiltEpiVar allows to calculate
interaction variables under four different interaction variable modeling approaches. The Eigen-epistasis
approach find for each gene pair a component defined as the linear combination of gene markers (SNPs)
having the highest correlation with the phenotype. The three other modeling approaches are inspired by
previous literature proposals, they compute interaction variable using: Principal Component Analysis (PCA),
Partial Least squares (PLS) or Canonical-Correlation Analysis (CCA). GLmodel fits a group lasso model on
the genetic data set enhanced by interaction variables then uses a screen and clean procedure in order to
compute p-values for each group. A group is either made with the SNPs from a given gene or of interaction
terms relative to a given gene-pair interaction.

Additionally, the package allows to generate genotype and phenotype data under two phenotypic models.

2) Generating genotype and phenotype data

The GGEE package allows to generate gene structured data and associated continuous phenotype according to
the model :

y = XTβ +ZTγ + ε

Where y ∈ Rn denotes the vector of trait values for n individuals, X ∈ {1, 2, 3}n×p represents the SNP
matrix, Z the matrix gathering interaction variables and ε ∈ Rn a gaussian error term. The columns of X
are structured on G non overlapping genes. Each gene is described by a given number of SNPs pg where∑

g pg = p. The matrix of interaction Z is structured into G(G− 1)/2 submatrices each submatrice being the
group of interaction variables for a specific pair of genes.

The two functions simGeno and simPheno allows to respectively simulate genotype and phenotype data.

library(GGEE)
sizeGenesMain <- rep(6,2) # 2 genes with 6 SNPs
sizeGenesPair <- rep(6,2) # 2 genes with 6 SNPs
sizeGenesRemain <- rep(6,4) # 4 genes with 6 SNPs
SameMainPair <- FALSE # Specify that genes with interaction effects will not have main effects
N<- 600
causalSNPnb <- 2
corr <- 0.8
MAFcausalSNP=0.2

Geno <- simGeno(N=N, corr=corr, sizeGenesMain=sizeGenesMain, sizeGenesPair=sizeGenesPair,
sizeGenesRemain=sizeGenesRemain, SameMainPair=SameMainPair, MAFcausalSNP=MAFcausalSNP,
causalSNPnb=causalSNPnb)
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With these parameters the function simGeno simulate a data set of 6 genes, each one composed of 6 SNPs,
for 600 individuals. The 2 first genes are considered to have main effects and the gene 3 and gene 4 to have
an interaction effect. For the four causal genes their 2 first SNPs are considered as causal variants. Rather
than a defined number of causal SNPs by causal gene, it is possible to use a portion of causal SNPs with the
option causalSNPportion. In this case the option causalSNPnb has to be NULL. In both cases, the SNPs
considered as causal are the first listed in the gene. The MAF of each SNP is randomly set between the
values minMAF and maxMaf (by befault minMAF=0.05 and maxMaf=0.5). For the causal SNPs the MAF value
correspond to MAFcausalSNP. The correlation between SNPs belonging to the same gene is set to corr=0.8.

The output of Geno contain the following elements :

• The 600× 48 genotype matrix X
• The list listGenesSNP that indicate the names of the SNPs composing each gene
• The vectors MainEff and GenePair which give the names of genes having respectively main or interaction

effects. The size of the vector GenePair is an even number, the pairs being defined with genes successively
taken two by two along the vector.

• The vector MAF which give the minor allele frequency observed for each simulated SNP

Geno$X[1:5,1:8]

## Gene.1.SNP.1 Gene.1.SNP.2 Gene.1.SNP.3 Gene.1.SNP.4 Gene.1.SNP.5
## [1,] 1 1 1 1 1
## [2,] 1 1 1 1 1
## [3,] 1 1 1 1 1
## [4,] 1 1 1 1 1
## [5,] 1 1 1 1 1
## Gene.1.SNP.6 Gene.2.SNP.1 Gene.2.SNP.2
## [1,] 2 1 1
## [2,] 1 1 2
## [3,] 1 1 1
## [4,] 2 2 1
## [5,] 1 1 1

Geno$listGenesSNP

## $Genes1
## [1] "Gene.1.SNP.1" "Gene.1.SNP.2" "Gene.1.SNP.3" "Gene.1.SNP.4"
## [5] "Gene.1.SNP.5" "Gene.1.SNP.6"
##
## $Genes2
## [1] "Gene.2.SNP.1" "Gene.2.SNP.2" "Gene.2.SNP.3" "Gene.2.SNP.4"
## [5] "Gene.2.SNP.5" "Gene.2.SNP.6"
##
## $Genes3
## [1] "Gene.3.SNP.1" "Gene.3.SNP.2" "Gene.3.SNP.3" "Gene.3.SNP.4"
## [5] "Gene.3.SNP.5" "Gene.3.SNP.6"
##
## $Genes4
## [1] "Gene.4.SNP.1" "Gene.4.SNP.2" "Gene.4.SNP.3" "Gene.4.SNP.4"
## [5] "Gene.4.SNP.5" "Gene.4.SNP.6"
##
## $Genes5
## [1] "Gene.5.SNP.1" "Gene.5.SNP.2" "Gene.5.SNP.3" "Gene.5.SNP.4"
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## [5] "Gene.5.SNP.5" "Gene.5.SNP.6"
##
## $Genes6
## [1] "Gene.6.SNP.1" "Gene.6.SNP.2" "Gene.6.SNP.3" "Gene.6.SNP.4"
## [5] "Gene.6.SNP.5" "Gene.6.SNP.6"
##
## $Genes7
## [1] "Gene.7.SNP.1" "Gene.7.SNP.2" "Gene.7.SNP.3" "Gene.7.SNP.4"
## [5] "Gene.7.SNP.5" "Gene.7.SNP.6"
##
## $Genes8
## [1] "Gene.8.SNP.1" "Gene.8.SNP.2" "Gene.8.SNP.3" "Gene.8.SNP.4"
## [5] "Gene.8.SNP.5" "Gene.8.SNP.6"

Geno$MainEff

## [1] "Genes1" "Genes2"

Geno$GenePair

## [1] "Genes3" "Genes4"

Geno$MAF

## Gene.1.SNP.1 Gene.1.SNP.2 Gene.1.SNP.3 Gene.1.SNP.4 Gene.1.SNP.5
## 0.19666667 0.19916667 0.17416667 0.26500000 0.05416667
## Gene.1.SNP.6 Gene.2.SNP.1 Gene.2.SNP.2 Gene.2.SNP.3 Gene.2.SNP.4
## 0.26166667 0.20583333 0.19500000 0.18583333 0.22500000
## Gene.2.SNP.5 Gene.2.SNP.6 Gene.3.SNP.1 Gene.3.SNP.2 Gene.3.SNP.3
## NA 0.47250000 0.19750000 0.21083333 0.29333333
## Gene.3.SNP.4 Gene.3.SNP.5 Gene.3.SNP.6 Gene.4.SNP.1 Gene.4.SNP.2
## 0.47750000 0.35666667 0.13916667 0.19750000 0.21583333
## Gene.4.SNP.3 Gene.4.SNP.4 Gene.4.SNP.5 Gene.4.SNP.6 Gene.5.SNP.1
## 0.35000000 0.40250000 0.27916667 0.20416667 0.20333333
## Gene.5.SNP.2 Gene.5.SNP.3 Gene.5.SNP.4 Gene.5.SNP.5 Gene.5.SNP.6
## 0.20083333 0.14750000 0.11583333 0.24916667 0.45000000
## Gene.6.SNP.1 Gene.6.SNP.2 Gene.6.SNP.3 Gene.6.SNP.4 Gene.6.SNP.5
## 0.19333333 0.19333333 0.45083333 0.09500000 0.49666667
## Gene.6.SNP.6 Gene.7.SNP.1 Gene.7.SNP.2 Gene.7.SNP.3 Gene.7.SNP.4
## 0.40750000 0.19416667 0.20500000 0.44333333 0.26083333
## Gene.7.SNP.5 Gene.7.SNP.6 Gene.8.SNP.1 Gene.8.SNP.2 Gene.8.SNP.3
## 0.45416667 0.42583333 0.19916667 0.19500000 0.41750000
## Gene.8.SNP.4 Gene.8.SNP.5 Gene.8.SNP.6
## 0.18416667 0.40666667 0.43333333

Once the genotype matrix obtained, phenotype values can be simulated through the function simPheno. The
function takes as parameters:

• the outputs of the simGeno function,
• two vectors of possible values for coefficients β and γ,
• the number or portion of causal SNPs to consider by gene (It has to be the same value than the one

chosen for simGeno),
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• a r2 value that calibrate the difficulty of the problem,
• a value for the intercept β0 (default β0 = 0),
• the model to consider to simulate interaction effects:

– "SNPproduct" : Yi = β0 +
∑

g βg

(∑
k∈C X

g
ik

)
+
∑

rs γrs

(∑
(j,k)∈C2 Xr

ijX
s
ik

)
+ εi

– "PCproduct": Yi = β0 +
∑

g βg

(∑
k∈C X

g
ik

)
+
∑

rs γrsC
r
i1C

s
i1 + εi

where C and C2 are respectively the set of causal SNPs and causal interactions, and εi a random Gaussian
variable. For each causal gene g a coefficient βg is assigned to the standardized sum of the causal SNPs. for
the interactions, in the first model "SNPproduct", all the causal SNPs from a causal pair (r, s) are pairwise
multiplied and the interaction of the causal pair is represented by the standardized sum of the products. In
the second model "PCproduct", the interaction is represented by the standardized product of the first PCA
component Cr

.1 of gene r and the first PCA component Cs
.1 of gene s. The computation of PCA components

is realized on the whole gene and not only on the causal SNPs.

# possible values for coef Beta or Gamma
pvBeta <- c(2,2)
pvGamma <- c(2,2)
r2 <- 0.4

Pheno <- simPheno(X=Geno$X, listGenes=Geno$listGenesSNP, MainEff=Geno$MainEff, GenePair=Geno$GenePair,
model="SNPproduct", pvBeta=pvBeta, pvGamma=pvGamma, r2=r2, causalSNPnb=causalSNPnb)

The outputs of the function simPheno includes

• the vector of phenotype continuous values y,
• the matrix G of the simulated main effects, each column represent one causal gene and correspond to

the standardized sum of its causal SNPs,
• the matrix GG of the simulated interaction effects, each column represent one causal interaction defined

depending of the selected model,
• values for the coefficient of determination R2 when considering the model containing only simulated

interaction effects R2I or only simulated main effects R2S or both simulated main and interaction effects
R2T,

• a list caract with the characteristic of the simulation. The information about the part of the coefficient

of determination R2 hat can be attributed to either interaction effects pR2
I

= R2
I

R2
T

or main effects

pR2
M

= R2
M

R2
T

is given.

head(Pheno$y)

## [,1]
## V1 -6.2029755
## V2 4.8071671
## V3 3.1516677
## V4 3.0961886
## V5 3.0868815
## V6 0.1770048

head(Pheno$G)
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## Genes1 Genes2
## V1 -0.7851669 -0.7974191
## V2 -0.7851669 0.1972825
## V3 -0.7851669 -0.7974191
## V4 -0.7851669 0.1972825
## V5 -0.7851669 -0.7974191
## V6 -0.7851669 -0.7974191

head(Pheno$GG)

## X.Genes3.Genes4
## [1,] -0.454578817
## [2,] 2.266092409
## [3,] 0.905756796
## [4,] -0.908024022
## [5,] -0.908024022
## [6,] -0.001133613

Pheno[c("R2T","R2I","R2S")]

## $R2T
## [1] 0.4288422
##
## $R2I
## [1] 0.1334254
##
## $R2S
## [1] 0.3008971

Pheno$caract

## $MainEff
## [1] "Genes1" "Genes2"
##
## $nbSNPbyMainEff
## Genes1 Genes2
## 6 6
##
## $Coef_MainEff
## Genes1 Genes2
## 2 2
##
## $causalSNPMainEff
## Genes1 Genes2
## [1,] "Gene.1.SNP.1" "Gene.2.SNP.1"
## [2,] "Gene.1.SNP.2" "Gene.2.SNP.2"
##
## $GenePair
## [1] "Genes3" "Genes4"
##
## $nbSNPbyInterGene
## Genes3 Genes4
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## 6 6
##
## $Coef_GenePair
## X.Genes3.Genes4
## 2
##
## $causalSNPInter
## Genes3 Genes4
## [1,] "Gene.3.SNP.1" "Gene.4.SNP.1"
## [2,] "Gene.3.SNP.2" "Gene.4.SNP.2"
##
## $beta0
## [1] 0
##
## $r2
## [1] 0.4
##
## $causalSNPportion
## NULL
##
## $causalSNPnb
## [1] 2
##
## $R2T
## [1] 0.4288422
##
## $PartR2I
## [1] 31.11293
##
## $PartR2S
## [1] 70.16498

3) The G-GEE method

Once genotype and phenotype data are obtained we can apply the G-GEE approach to seek for interaction
effects. The first step is to create interaction variables from each gene couple, the second is to test for
potential main or interaction effects.
Interaction variable modeling can be done with the function BuiltEpiVar. The function takes as parameters
the matrix of genotype X, the vector of phenotypic traits y, a list listGenesSNP that indicate the names of
the SNPs composing each gene and nbcomp the number of components to consider to compute interaction
variables. Four different methods can be use to create interaction variables :

• "GGEE" which find for each gene pair its Eigen-epistasis Component that maximize the correlation
between all possible SNP-SNP interactions and the phenotype.

• "PCA" which first compute PCA on each gene of the pair and represent the interaction with component
products.

• "PLS" interaction variables are defined by components that maximize the covariance between the two
genes and the phenotype.

• "CCA" interaction variables are here represent by the product of pairwise components obtained by a
canonical correlation analysis on the gene pair.

Here we show an example using "GGEE"option. As this method can compute only one interaction by gene
couple, the parameter nbcomp doesn’t need to be used.
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Int <- BuiltEpiVar(Geno$X, Pheno$y, method="GGEE", listGenesSNP=Geno$listGenesSNP)

## [1] "X.Genes1.Genes2"
## [1] "X.Genes1.Genes3"
## [1] "X.Genes1.Genes4"
## [1] "X.Genes1.Genes5"
## [1] "X.Genes1.Genes6"
## [1] "X.Genes1.Genes7"
## [1] "X.Genes1.Genes8"
## [1] "X.Genes2.Genes3"
## [1] "X.Genes2.Genes4"
## [1] "X.Genes2.Genes5"
## [1] "X.Genes2.Genes6"
## [1] "X.Genes2.Genes7"
## [1] "X.Genes2.Genes8"
## [1] "X.Genes3.Genes4"
## [1] "X.Genes3.Genes5"
## [1] "X.Genes3.Genes6"
## [1] "X.Genes3.Genes7"
## [1] "X.Genes3.Genes8"
## [1] "X.Genes4.Genes5"
## [1] "X.Genes4.Genes6"
## [1] "X.Genes4.Genes7"
## [1] "X.Genes4.Genes8"
## [1] "X.Genes5.Genes6"
## [1] "X.Genes5.Genes7"
## [1] "X.Genes5.Genes8"
## [1] "X.Genes6.Genes7"
## [1] "X.Genes6.Genes8"
## [1] "X.Genes7.Genes8"

Int is a list composed of the interaction variable matrix XBet and a vector interLength indicating the
number of interaction variables for each couple.

head(Int$XBet)

## X.Genes1.Genes2 X.Genes1.Genes3 X.Genes1.Genes4 X.Genes1.Genes5
## [1,] -0.37483330 -0.94670703 -0.38919401 -0.08003515
## [2,] -0.39592814 0.91481607 -0.45494578 -0.92748635
## [3,] -1.13993875 -0.62887479 -0.08627101 -0.92748635
## [4,] 0.07089144 -0.77947346 -0.44337368 -0.19737197
## [5,] -0.65541149 -1.09900054 -0.98329433 -1.06206221
## [6,] -0.98275928 -0.09209224 -1.12114191 -0.92748635
## X.Genes1.Genes6 X.Genes1.Genes7 X.Genes1.Genes8 X.Genes2.Genes3
## [1,] -0.9840520014 -1.04211751 0.82969437 -0.74267166
## [2,] -1.1604971995 -0.09719768 -1.14936788 2.63455984
## [3,] -0.5770498185 -1.03724033 -1.14936788 -0.70647238
## [4,] -0.4921236289 -1.04211751 -0.08545953 -0.20605273
## [5,] -0.0006838417 -1.19063609 -0.86384571 -0.77196252
## [6,] -0.7251952842 -0.59579760 -0.42786058 0.07351239
## X.Genes2.Genes4 X.Genes2.Genes5 X.Genes2.Genes6 X.Genes2.Genes7
## [1,] -0.09313049 0.2318984 -0.7985800 -0.8502372
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## [2,] 0.45555707 -0.2437522 -0.5602747 1.0355134
## [3,] -0.17521410 -0.9946540 -0.6498773 -1.0609108
## [4,] 0.28202240 0.6780865 0.2360542 -0.5501733
## [5,] -0.60399652 -0.7052613 0.7138565 -0.8725055
## [6,] -1.04522407 -0.8485122 -0.6000253 -0.4724529
## X.Genes2.Genes8 X.Genes3.Genes4 X.Genes3.Genes5 X.Genes3.Genes6
## [1,] 1.2861504 -0.7459509 -0.53651266 -1.22455631
## [2,] -0.6156480 2.2484680 1.12889685 0.57016583
## [3,] -1.2127405 0.5246863 -0.53661195 -0.04100884
## [4,] 0.8990921 -0.6381722 -0.41782982 -0.68456483
## [5,] -0.4856079 -1.0574103 -1.12197499 -0.21699927
## [6,] -0.2747193 -0.2948713 0.05735485 0.45018384
## X.Genes3.Genes7 X.Genes3.Genes8 X.Genes4.Genes5 X.Genes4.Genes6
## [1,] -1.2289787 0.2062986 0.21256666 -0.82009749
## [2,] 3.2952219 0.5603280 -0.33551056 -0.68389022
## [3,] -0.6615142 -0.8208560 0.07837627 0.77142967
## [4,] -1.1144847 -0.2816493 -0.02322449 -0.41441027
## [5,] -1.2289787 -0.9767993 -1.03239192 0.04376543
## [6,] 0.6031412 0.9669974 -1.03038818 -0.81726379
## X.Genes4.Genes7 X.Genes4.Genes8 X.Genes5.Genes6 X.Genes5.Genes7
## [1,] -0.8343211 1.27464199 -0.62192832 -0.540364461
## [2,] 0.8602911 -0.67289634 -1.16637670 -0.002284382
## [3,] -0.1070488 -0.30912262 -0.59863632 -0.910825826
## [4,] -0.9240035 0.03565863 0.23633828 -0.504340543
## [5,] -1.1552503 -0.84450730 0.01109224 -1.125938435
## [6,] -0.7294656 -0.56757659 -0.64043302 -0.562121158
## X.Genes5.Genes8 X.Genes6.Genes7 X.Genes6.Genes8 X.Genes7.Genes8
## [1,] 1.6829651 1.3868208 -0.12956983 0.11597046
## [2,] -1.0196164 0.2845163 1.23380165 -0.08384636
## [3,] -1.0196164 0.7923786 0.73089992 0.08244763
## [4,] 0.6340071 1.1216686 0.01762371 -0.20021082
## [5,] -0.7815674 0.3919226 -0.30010144 -0.26012786
## [6,] -0.3694684 -0.2546694 -0.17668121 -1.08647434

Int$interLength

## X.Genes1.Genes2 X.Genes1.Genes3 X.Genes1.Genes4 X.Genes1.Genes5
## 1 1 1 1
## X.Genes1.Genes6 X.Genes1.Genes7 X.Genes1.Genes8 X.Genes2.Genes3
## 1 1 1 1
## X.Genes2.Genes4 X.Genes2.Genes5 X.Genes2.Genes6 X.Genes2.Genes7
## 1 1 1 1
## X.Genes2.Genes8 X.Genes3.Genes4 X.Genes3.Genes5 X.Genes3.Genes6
## 1 1 1 1
## X.Genes3.Genes7 X.Genes3.Genes8 X.Genes4.Genes5 X.Genes4.Genes6
## 1 1 1 1
## X.Genes4.Genes7 X.Genes4.Genes8 X.Genes5.Genes6 X.Genes5.Genes7
## 1 1 1 1
## X.Genes5.Genes8 X.Genes6.Genes7 X.Genes6.Genes8 X.Genes7.Genes8
## 1 1 1 1

Test for potential main or interaction effects is done with the function GLmodel. Parameters include nlambda,
the length of the grid of possible lambda values, limitLambda the number of the largest lambda values among
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the grid to consider for the cross validation and lambda.cri the criteria for lambda selection (minimum or
oneSE value).

res <- GLmodel(Geno$X, Pheno$y, Int$XBet, interLength=Int$interLength,
listGenesSNP=Geno$listGenesSNP, nlambda=100, limitLambda=25, lambda.cri="min")

##
## LinReg()
## Lambda = 1388.49 1100.355 872.0123 691.0549 547.6492 434.0026 343.9396 272.5663 216.0041 171.1796 135.6569 107.5058 85.19647 67.51675 53.50587 42.40249 33.60325 26.63 21.10382 16.72441 13.25381 10.50342 8.32378 6.596454 5.227577

The outputs of GLmodel contain:

• the matrix res_GL.min giving for each SNP an interaction variable the group lasso coefficient values at
the optimal lambda level,

• the matrix pval.adj that give adjusted pvalues of each variable with nonzero group lasso coefficient.

res

## $res_GL.min
## Coefs
## Genes1 0.774115652
## Genes1 1.088838532
## Genes1 -0.212205483
## Genes1 -0.359715714
## Genes1 0.251117271
## Genes1 0.077745993
## Genes2 1.034953657
## Genes2 0.751272211
## Genes2 -0.227326819
## Genes2 0.007677615
## Genes2 -0.186737098
## Genes2 0.397955300
## Genes3 0.097299058
## Genes3 0.161389619
## Genes3 0.016012206
## Genes3 -0.036971423
## Genes3 -0.043448945
## Genes3 0.021385553
## Genes4 0.757663956
## Genes4 0.325003095
## Genes4 -0.139607623
## Genes4 -0.194381959
## Genes4 -0.254329496
## Genes4 0.136103406
## Genes5 0.115314233
## Genes5 -0.136702380
## Genes5 0.158719438
## Genes5 -0.128245444
## Genes5 -0.069903366
## Genes5 0.031734515
## Genes6 0.000000000
## Genes6 0.000000000
## Genes6 0.000000000
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## Genes6 0.000000000
## Genes6 0.000000000
## Genes6 0.000000000
## Genes7 0.000000000
## Genes7 0.000000000
## Genes7 0.000000000
## Genes7 0.000000000
## Genes7 0.000000000
## Genes7 0.000000000
## Genes8 0.000000000
## Genes8 0.000000000
## Genes8 0.000000000
## Genes8 0.000000000
## Genes8 0.000000000
## Genes8 0.000000000
## X.Genes1.Genes2 0.000000000
## X.Genes1.Genes3 0.243086593
## X.Genes1.Genes4 0.000000000
## X.Genes1.Genes5 0.401950190
## X.Genes1.Genes6 0.000000000
## X.Genes1.Genes7 0.000000000
## X.Genes1.Genes8 0.000000000
## X.Genes2.Genes3 0.000000000
## X.Genes2.Genes4 0.000000000
## X.Genes2.Genes5 0.235994954
## X.Genes2.Genes6 0.000000000
## X.Genes2.Genes7 0.000000000
## X.Genes2.Genes8 0.000000000
## X.Genes3.Genes4 1.026008870
## X.Genes3.Genes5 0.000000000
## X.Genes3.Genes6 0.000000000
## X.Genes3.Genes7 0.000000000
## X.Genes3.Genes8 0.000000000
## X.Genes4.Genes5 0.000000000
## X.Genes4.Genes6 0.000000000
## X.Genes4.Genes7 0.140106570
## X.Genes4.Genes8 0.000000000
## X.Genes5.Genes6 0.000000000
## X.Genes5.Genes7 0.000000000
## X.Genes5.Genes8 0.000000000
## X.Genes6.Genes7 0.218978412
## X.Genes6.Genes8 0.000000000
## X.Genes7.Genes8 0.620258051
##
## $pval.adj
## pval.adj
## Genes1 0.0060
## Genes2 0.0000
## Genes3 0.7680
## Genes4 0.7680
## Genes5 0.7656
## X.Genes1.Genes3 1.0000
## X.Genes1.Genes5 0.9330
## X.Genes2.Genes5 1.0000

10



## X.Genes3.Genes4 0.0440
## X.Genes4.Genes7 1.0000
## X.Genes6.Genes7 0.4980
## X.Genes7.Genes8 1.0000
##
## $vc
## $vc$cv.error
## [,1] [,2] [,3]
## [1,] 26.03778 28.20617 30.37455
## [2,] 25.44842 27.56409 29.67975
## [3,] 23.22780 25.11934 27.01087
## [4,] 21.99849 23.75046 25.50242
## [5,] 20.34819 21.95416 23.56013
## [6,] 19.61963 21.17145 22.72326
## [7,] 19.11130 20.62290 22.13450
## [8,] 18.50820 19.97642 21.44464
## [9,] 18.51268 19.99756 21.48243
## [10,] 17.82899 19.28354 20.73808
## [11,] 17.03897 18.46031 19.88165
## [12,] 16.68447 18.12269 19.56090
## [13,] 16.44592 17.82879 19.21167
## [14,] 15.79100 17.14569 18.50038
## [15,] 16.30621 17.66392 19.02162
## [16,] 16.63534 17.98745 19.33957
## [17,] 16.55811 17.92767 19.29724
## [18,] 17.10219 18.50330 19.90440
## [19,] 17.57334 19.03364 20.49394
## [20,] 17.46342 18.82543 20.18744
## [21,] 18.53222 20.07354 21.61485
## [22,] 18.54618 20.01007 21.47396
## [23,] 19.47074 20.97730 22.48385
## [24,] 19.57690 21.05210 22.52729
## [25,] 19.84027 21.46739 23.09450
##
## $vc$lambda
## [1] 1388.490254 1100.354780 872.012346 691.054871 547.649167
## [6] 434.002599 343.939638 272.566281 216.004116 171.179568
## [11] 135.656880 107.505758 85.196474 67.516749 53.505869
## [16] 42.402486 33.603245 26.629997 21.103817 16.724414
## [21] 13.253812 10.503420 8.323780 6.596454 5.227577
##
## $vc$lambda.min
## [1] 67.51675
##
## $vc$lambda.oneSE
## [1] 135.6569
##
## $vc$id.lambda.min
## [1] 14
##
##
## attr(,"class")
## [1] "GLmodel"
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The GGEE package contains a plot function plot.GLmodel. The function takes as parameter a GLmodel object
and provides a representation of cross validation results. It depicts the value of the cross validation error for
each lambda considered and thus allows to identify the optimal lambda values depending of the criteria of
interest (minimal or oneSE). This plot allows to verify that enough lambda values was considered for the
cross validation. If the curve doesn’t show a clear minimal value the parameter limitLambda of the GLmodel
has to be enlarged.

plotGLmodel(res)
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λ̂oneSE = 135.66
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Eigen-Epistasis for detecting gene-gene
interactions
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Abstract

Background: A large amount of research has been devoted to the detection and investigation of epistatic
interactions in genome-wide association studies (GWASs). Most of the literature focuses on low-order interactions
between single-nucleotide polymorphisms (SNPs) with significant main effects.

Results: In this paper we propose an original approach for detecting epistasis at the gene level, without
systematically filtering on significant genes. We first compute interaction variables for each gene pair by finding its
Eigen-Epistasis component, defined as the linear combination of Gene SNPs having the highest correlation with the
phenotype. The selection of significant effects is done using a penalized regression method based on Group Lasso
controlling the False Discovery Rate.

Conclusion: The method is tested against two recent alternative proposals from the literature using synthetic data,
and shows good performances in different settings. We demonstrate the power of our approach by detecting new
gene-gene interactions on three genome-wide association studies.

Keywords: Genome-wide association study, Gene-gene interactions, Epistasis, Group Lasso

Background
Genome Wide Association Studies (GWASs) look for
genetic markers linked to a phenotype of interest. Typ-
ically, hundreds of thousands of single nucleotide poly-
morphisms (SNPs) are studied for a limited number of
individuals using high-density genotyping arrays. Usually
the association between each SNP and the phenotype
is tested using single-marker methods. Multiple markers
may also be considered, but these are typically selected
using simple forward-selection methods. GWASs are a
powerful tool for investigating the genetic architecture
of complex diseases and have been successful in iden-
tifying hundreds of variants. However, they have been
able to explain only a small proportion of the pheno-
typic variations expected from classical family studies
[1]. A number of explanations for this missing heritabil-
ity have been put forward. For example, it has been
suggested that shared environments among relatives are
not adequately taken into account. Another suggestion is
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Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université
d’Evry Val d’Essonne, UMR CNRS 8071, ENSIIE, USC INRA, 23 bvd de France, 91
037, Evry Cedex, Paris, France

that much larger numbers of variants with small effects
remain to be identified. Rare variants, which are diffi-
cult to find using existing genotyping arrays [1], seem to
be important causal factors, and so do structural vari-
ations. But complex diseases may also be caused, at
least in part, by complex genetic structures with multi-
ple interactions between markers (a phenomenon termed
epistasis). Whereas in pedigree studies the genetic effect
on phenotype is seen as part of the additive genetic
variance, in GWASs it is seen as an unmeasured inter-
action between genes [2]. For example, Zuk et al. pro-
posed amodel that takes into account epistatic interaction
in relation to Crohn’s disease [3]. They found that
80% of the missing heritability could be due to genetic
interactions.
In recent years a number of methods for studying

epistasis have been proposed and reported in various
reviews [4–6]. They vary in terms of their data analysis
(genome-wide or filtering) and their statistical method-
ology (Bayesian, frequentist, machine learning or data
mining). Most of them focus on single-locus interac-
tions, but considering interactions at the gene level can
have several advantages. First, given that genes are the

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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functional unit of the genome, results may be more bio-
logically interpretable. Second, genetic effects are more
easily detected when SNP effects are aggregated together.
Third, gene-based analysis simplifies the multiple test-
ing problem by reducing the number of variables. Several
gene-gene methods have been proposed. These are based
on a summarizing step which is used to obtain informa-
tion at the gene level. In more recent methods, filters or
penalized models are used to make the method appli-
cable to a large number of genes, while older methods
are only applicable to two or a very limited number of
genes. For the summarizing step, most methods resort to
a principal components (PC) approach, but each method
has its specific characteristics. We describe some of
these below.
Chatterjee et al. harnessed Tukey’s one-degree-of-

freedom method to investigate interaction between two
genes [7]. Their method is based on the assumption that
the SNPs included in each gene region act as surrogates
for an underlying biological phenotype. The genotypic
information for the gene region is extracted as a single
component by a weighted sum of all SNPs. The weights
are determined according to the SNP’s correlation with
the trait. The product of the two sums is then introduced
as the gene-gene interaction term into a logistic model,
where marginal effects are represented by the respective
sums. Building on this idea,Wang et al. compared two dif-
ferent interaction tests [8]. On the one hand, they used
Principal Component Analysis (PCA) to summarize SNP
information within a gene, and on the other hand they
used Partial Least Squares (PLS) to extract components
that summarize, first, the information among SNPs in a
gene and, second, the correlation between SNPs and the
outcome of interest. They then proposed an interaction
test based on either the first PC or the first PLS com-
ponent for each gene, and were able to show that the
PCA and PLS methods often outperformed Tukey’s one-
degree-of-freedom method. But it is worth noting that
the main objective of these three methods was improving
the detection of associations in the presence of gene-
gene interactions, rather than identifying the interactions
themselves. Other approaches based on principal com-
ponent analysis have since been proposed for epistasis
detection. Li et al. proposed selecting, as the gene repre-
sentation, PCs that are able to explain at least 80% of the
variation [9].
Genotypic data are characterized by the high corre-

lation among markers resulting from so-called linkage
disequilibrium (LD). Procedures that take LD information
into account have been developed for epistasis detection.
For example, He et al. proposed an approach using LD
information to weight genotype scores which are then
aggregated using principal components [10]. Rajapakse
et al. developed a gene-based test of interactions for

case-control studies which compares LD patterns between
cases and controls [11]. Using the same idea, Peng et
al. used a canonical correlation-based U-statistic model
(CCU) to detect co-association in case-control studies
[12]. The idea is to test for two given genes the difference
between canonical correlation coefficient computed by
Canonical Correlation Analysis (CCA) among cases and
among controls. Their work was subsequently extended to
include kernel [13, 14].
However most of these methods can be applied only to

a reduced number of genes. Computational constraints
mean that it is not feasible to model all gene-gene interac-
tions directly. One way of overcoming this is to reduce the
gene-gene search space by eliminating unimportant genes,
and to this end two-step procedures have been devel-
oped that first filter out specific genes or SNPs through
a genome-wide search before testing for interactions.
One example of this is the model-based kernel machine
method (3G-SPA) proposed by Li and Cui, which first
performs a search for gene pairs contributing to the over-
all phenotypic variations [15]. Significant pairs are then
tested for interaction effects. Another attractive alterna-
tive is offered by penalized regression methods that select
a subset of important predictors out of a large number of
potential predictors. These methods operate by shrinking
the size of the coefficients. The coefficients of predictors
with little or no apparent effect are force to be set to zero,
reducing the effective degrees of freedom and in many
cases making model selection possible. A few approaches
using penalized models have been proposed. D’Angelo
et al. combined principal component analysis and lasso
penalized regression [16]. Wang et al. used a principal
component analysis combined with an L1 penalty, with
adaptive weights based on gene size, pathway support and
effect size [17].
Here we propose a Group Lasso approach [18] that

takes into account the group structure of each gene in
order to detect epistasis. We introduce Gene-Gene Eigen-
Epistasis (G-GEE) as a new approach for computing the
gene-gene interaction part of the model, and we compare
G-GEE with two different interaction variable modeling
approaches inspired by previous proposals in the litera-
ture, namely PCA and PLS. An adaptive ridge-cleaning
approach [19] is then used in order to compute p-values
for each group.
In the next section, we detail each model and outline

the design of the simulation studies performed to com-
pare the performance of the different approaches. In the
Results section, the findings of the simulation studies
are shown, and we illustrate our approach on three real
datasets relating to ankylosing spondylitis, thyroid car-
cinomas and inflammatory bowel disease. The different
approaches and the results are discussed in the last
section.
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Methods
We consider n individuals where y = (y1, y2, . . . , yn)T
denotes the vector of trait values. For each individual,
genetic variants amongG genes are considered. Each gene
is described by a given number of SNPs pg where

∑
g pg =

p. The SNPmatrixX ∈ R
n×p considers an additive coding

scheme in which the genotype value of each SNP j from
individual i is denoted Xij ∈ {1, 2, 3}. Xi is a p-dimensional
vector of covariates for observation i and for j ∈ {1, . . . , p}.
Xg denotes the submatrix of X whose columns are the pg
SNPs of gene g. A generalized linear model is generally
assumed for GWAS, where the phenotype is considered
as a random variable yi whose conditional expectation can
be written as a function of the covariates X i and their
interactions Zi,

g
(
E

[
yi|X

]) = XT
i β + ZT

i γ ,

where

β =
⎛

⎜
⎝β1,1,β1,2, . . . ,β1,p1︸ ︷︷ ︸

gene1

, . . . ,βG,1, . . . ,βG,pG︸ ︷︷ ︸
geneG

⎞

⎟
⎠

T

,

and Zi is the ith line of the matrix of interactions and
γ a parameter vector of appropriate dimension. When
the phenotype is binary (case control study), it is usual
to assume a logistic model where g() is the logit and Y
is assumed to follow a binomial distribution. Below we
will consider only quantitative phenotypes using a classi-
cal linear model. In this case g() is the identity and the
residuals are assumed to be Gaussian.
The main effect of each gene is modeled through the

sum of the effects of all its SNPs. Concerning interaction
effects, we compute new variables representing interac-
tions between two specific genes and define as a group all
the interaction variables related to a given pair of genes.
The matrix of interaction is thus structured into G(G −
1)/2 submatrices:

Z =
[
Z11 · · ·Zrs · · ·ZG(G−1)/2

]

where Zrs describes the interactions between the two
genes r and s. The parameter vector γ is accordingly struc-
tured into sub-vectors γ rs. We will now present and com-
pare three different approaches for modeling gene-gene
interactions.

Modeling gene-gene interactions
Let us consider two genes r and s described respectively
by pr and ps SNPs. A possible interaction term describing
the epistasis between the two genes is

Zrs
i
Tγ rs =

pr∑

j=1

ps∑

k=1
γ rs
jk X

r
ijX

s
ik . (1)

We hereafter set W rs = {Xr
ijX

s
ik}j=1,··· ,pr ;k=1,··· ,ps

i=1···n . In this
case the submatrix of interactions is Zrs = W rs and γ rs =
{γ rs

jk } is a vector of size prps. The number of parameters
in such a model is obviously too large to be reliably esti-
mated. For this reason a number of papers in the literature
consider reducing the dimension of γ .
In this paper we will consider three different methods

for reducing the dimension reduction, namely Principal
Component Analysis (PCA), Partial Least Squares (PLS),
and our proposed Gene-Gene Eigen-Epistasis approach
that we have termed G-GEE.

Principal component analysis
Principal Component Analysis (PCA) can reduce the
number of variables describing each gene r from pr to
qr < pr . Considering gene r described by pr SNPs, we
compute the matrix of the first q principal components

Cr = XrUr ,

where Ur is the matrix of the first qr principal axes. Using
Cr and Cs instead of Xr and Xs in the computation of the
interaction allows the number of parameters relative to
each interaction to be controlled. This control is achieved
by choosing the number of principal components q. The
PCAmodel that we describe draws upon ideas in [20]. The
interaction term takes the form

Zrs
i
Tγ rs =

q∑

j=1

q∑

k=1
γ rs
jk C

r
ijC

s
ik .

Relating this expression to the general form of the
interaction term W rs

i described above, we can see that
performing PCA prior to computing the interactions is a
means of constraining the linear interaction term of Eq. 1.
The submatrix of interactions is Zrs =

{Cr
ijC

s
ik}j=1,··· ,q;k=1,··· ,q

i=1···n , and γ rs = {γ rs
jk } is a vector of size

q2 describing the interaction between genes r and s. In
particular, if a single principal component is chosen, there
will be only one parameter to estimate per interaction.

Partial least squares
Wang et al. proposed an alternative method for integrat-
ing interactions using a PLS approach [8]. Let (Xr ,Xs)
be the genotypic matrix for the given pair of genes (r, s).
Their approach computes the components that maximize
cov2(Xru,Tv), with T = (y,Xs) and (u, v) the weight vec-
tors. The interaction of a couple of genes (r, s) is then
represented by the first q components:

Zrs
i
Tγ rs =

q∑

j=1
γ rs
j Trs

ij .

In this approach phenotypic information is retained
when the interaction variables are constructed.



Stanislas et al. BMC Bioinformatics  (2017) 18:54 Page 4 of 14

Gene-gene Eigen-Epistasis
We propose an original approach for modeling interac-
tions. The general idea is to consider the interaction vari-
able between the two genes r and s as a function fu(Xr ,Xs)
parameterized by u. One way to estimate u is to maximize
the correlation between the interaction function and the
phenotype:

û = arg max
u,‖u‖=1

cov2
(
y, fu

(
Xr ,Xs)) .

If we consider the function f to be linear, our problem
becomes easily tractable and has only one solution. Setting

Zrs = fu
(
Xr ,Xs) = W rsu,

where W rs = {Xr
ijX

s
ik}j=1··· ,pr ;k=1,··· ,ps

i=1···n and u ∈ R
prps we

obtain the following problem:

max
u,‖u‖=1

∥
∥ ˆcov [

W rsu, y
]∥
∥2 = max

u,‖u‖=1

∥
∥
∥uTW rsTy

∥
∥
∥
2

= max
u,‖u‖=1

uTW rsTyyTW rsu.

(2)

The solution u is the eigenvector corresponding to the
largest eigenvalue of the matrix W rsTyyTW rs, which is
the vector W rsTy. The complexity of computing u is
therefore in O(nprps). We then use the projection of the
matrix W rs on u as the interaction variable. The result-
ing Eigen-Epistasis vector Z is the linear combination of
all the SNP-SNP interactions being the most correlated
with the phenotype. In its construction, G-GEE has simi-
larities with PLS. The main difference lies in the original
design matrix. PLS searches for components that maxi-
mize cov2(Xru, yXsv), whereas G-GEE retains the compo-
nent thatmaximizes cov2(y,W rsu), withW rs thematrix of
all pairwise interaction between the two genes r and s. Like
PLS, G-GEE takes phenotypic information into account
in the construction of the interaction variables. Other
methods as such as CCU [12] and the kernel versions of
CCU [13, 14] that we referred to in the introduction also
consider the phenotype in their construction, but these
methods can be applied only to case-control problems.

Estimation of coefficients
We propose a Group Lasso approach [18] for estimating
the parameters of linear or logistic (case control) regres-
sion. A group comprises either the SNPs of a given gene,
or interaction terms relative to a given gene-pair interac-
tion. In the particular case of linear regression, the model
parameters are estimated by:

θ̂ =
(
β̂ , γ̂

)
= argmin

β ,γ

⎛

⎝
∑

i
(yi − X iβ − Ziγ )2 + λ

⎡

⎣
∑

g

√
pg‖βg‖2

+
∑

rs

√prps‖γ rs‖2
])

,

The parameter λ is selected by cross-validation.
In order to improve estimation accuracy and to obtain

p-values for each of the selected groups, we use the adap-
tive ridge cleaning approach proposed by Bécu et al. [19].
This screen and clean procedure is a two-stage method.
The group lasso model is first fitted on half of the data.
The coefficient of the candidate groups selected by the
model are then introduced into a ridge regression model
fitted on the second half of the data with a specific penalty
that allows the group structure to be taken into account.
For each group the significance of the regression coeffi-
cients is estimated using permutation tests.

Simulation design
To evaluate the performance of the proposed approach,
we conducted two simulation studies, the first using sim-
ulated data and the second using a real dataset relating to
ankylosing spondylitis. In each case we compared the pro-
posed G-GEE model to the two other interaction variable
modeling approaches. The first simulation corresponds to
a simplified context where all parameters were controlled
and external interference limited, while the second sim-
ulation corresponds to a realistic context with a realistic
pattern of minor allele frequency (MAF) and LD.

Design
Genotypes Our first (simplified) simulation study was
adapted from the model used in [21] with an extension to
control the MAF of each SNP. The n lines of the genotype
matrix are an i.i.d. sample from a multivariate random
vector X i ∼ Np(0,�). The correlation matrix � is block
diagonal, each block corresponding to a gene. Two vari-
ables belonging to the same gene are correlated at level
ρ = 0.8 while all other correlations are null. Each SNP
(column of the genotype matrix) is randomly assigned an
MAF p from a uniform distribution between 0.05 and 0.5.
An MAF value of 0.2 is assigned to all causal SNPs. The
genotype frequencies derived from the Hardy-Weinberg
equation are then used to discretize Xik values to 0, 1 or 2.
In practice, Xik is set to 1 if Xik < qp2;N(0,1), Xik is set to 3
if Xik < q(1−p)2;N(0,1) and Xik is set to 2 otherwise.
In the second (realistic) simulation study using a

real ankylosing spondylitis dataset, genes are randomly
selected. The number of SNPs composing each genes
varies according to the selection.

Phenotypes For both simulation studies, we generated
phenotype vectors using two different schemes. Our first
scheme corresponds to the model proposed by Wang et
al. [17] (which, for the sake of brevity, we will refer to
hereafter as the “Wang Pathway” model):

Yi = β0 +
∑

g
βg

(
∑

k∈C
Xg
ik

)

+
∑

rs
γrs

⎛

⎝
∑

(j,k)∈C2

Xr
ijX

s
ik

⎞

⎠ + εi, (3)
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where C and C2 are respectively the set of causal SNPs and
causal interactions, and εi a randomGaussian variable. For
each causal gene g, we consider two causal SNPs and a
coefficient βg is assigned to the standardized sum of these
causal SNPs. In the same way, for the interactions, all the
causal SNPs from a causal pair (r, s) are pairwise multi-
plied and a coefficient γrs is assigned to the standardized
sum of the product.
Our second scheme for simulating phenotypes is based

on the following model:

Yi = β0+
∑

g
βg

(
∑

k∈C
Xg
ik

)

+
∑

rs
γrs

⎛

⎝
∑

(j,k)∈C2

Cr
ijC

s
ik

⎞

⎠+εi.

(4)

The difference with the first model concerns the simu-
lation of the interaction effect. In the second model the
interaction effect for a causal couple (r, s) is defined as the
product of the first PCA component Cr

.1 of gene r and the
first PCA component Cs

.1 of gene s.
In both models, β0 is set to 0, and εi are generated inde-

pendently from a N (0, σ 2), with σ 2 determined from the
coefficient of determination R2 that calibrates the strength
of the association. Both simulation models can be writ-
ten as yi = XT

i β + ZT
i γ + εi where X the marginal effect

genotype matrix and Z the interaction effect matrix.

Let us denote Qφ =[X,Z]
[

β

γ

]

and

R2 =
∑

(Qiφ − ȳ)2
∑

(Qiφ + εi − ȳ)2

=
∑

(Qiφ − ȳ)2
∑

(Qiφ − ȳ)2 + ∑
ε2i + ∑

2 (εi (Qiφ − ȳ))

=
∑

(Qiφ − ȳ)2
∑

(Qiφ − ȳ)2 + n ˆvar(εi) + 2n ˆcov (εi,Qiφ − ȳ)
.

We remark that:

2ncov (εi,Qiφ − ȳ) = 2ncov
(

εi,Qiφ −
∑

j yj
n

)

= 2ncov (εi,Qiφ) −
∑

j

2n
n
cov

(
εi, yj

)

= 0 − 2cov (εi, εi) = −2σ 2

Thus, replacing ˆvar(εi) by σ 2, and ˆcov(εi,Qiφ − ȳ) by
−σ 2/n, we obtain R2 ≈

∑
(Qiφ−ȳ)2∑

(Qiφ−ȳ)2+nσ 2−2σ 2 . This rela-
tion between R2 and σ 2 gives us an expression for σ 2 that
depends on R2, σ 2 = (R2−1)

∑
(Qiφ−ȳ)2

R2(2−n)
.

We looked at how much of the coefficient of determi-
nation R2 is explained by main effects, and how much
is explained by interaction effects, in order to determine
their respective roles in the model.

For a similar reason, when simulating phenotypes,
Wang et al. [17] examined how much of partial R2 was
due to interaction effects. They selected coefficient values
so that 30% of the partial R2 was explained by interaction
effects. Li and Cui [15] did not use the R2 directly, but they
simulated data assuming different proportions of interac-
tion effects among the total genetic variance. In our study,
once the phenotype y had been set for each simulated
design matrix, we computed howmuch of the R2 could be
attributed to interaction and main effects as pI = R2I

R2T
and

pM = R2M
R2T

respectively, with R2
I the R-square value for the

model containing only simulated interaction effects, R2
M

the R-square value where there were only simulated main
effects, and R2

T R-square value where there were both
simulated main effects and simulated interaction effects.

Scenarios In the first (simplified) simulation study, geno-
types are simulated as described in the design. We con-
sidered six genes, each composed of six SNPs and for 600
subjects. We define one causal interaction between genes
and two causal genes withmain effects, and the simulation
takes place using two alternative simulation settings:

• (1) one interaction and two main effects involving the
same genes

• (2) one interaction and two different main effects

For these two settings, different coefficients of determina-
tion, from 0.05 to 0.7, are considered and 1000 iterations
are performed.
In the second (realistic) simulation study, genotypes

come from a real dataset comprising 763 individuals. At
each iteration we randomly select six genes of various size
(from 1 to 1119 with a median of 2 SNPs) in the dataset.
We consider the five following settings:

• (1) one interaction and two main effects involving the
same genes

• (2) one interaction and two different main effects
• (3) one interaction effect only
• (4) two main effects only
• (5) no effects

For each setting, coefficients of determination, from 0.1
to 0.4, are considered and 500 iterations are performed.
For both simulation studies, main effects and interac-

tion effects are weighted with the same coefficient values
(βg = γrs = 2,∀g, r, s). For each interaction, the power is
estimated as the proportion of detected interactions over
the total number of simulations.

Real data illustration
To illustrate our approach we applied the proposed
method on three real datasets related to ankylosing
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spondylitis, thyroid carcinomas and inflammatory bowel
disease.
The dataset regarding ankylosing spondylitis consists of

the French subset of the large study of the International
Genetics of Ankylosing Spondylitis (IGAS) study [22].
For this subset, unrelated cases were recruited through
the Rheumatology clinic of Ambroise Paré Hospital
(Boulogne-Billancourt, France) or through the national
self-help patients’ association: "Association Française des
Spondylarthritiques". Population-matched unrelated con-
trols were obtained from the "Centre d’Etude du Polymor-
phisme Humain", or were recruited as healthy spouses of
cases. The protocol was reviewed and approved by the
Ethics committee of the Ambroise Paré hospital. All par-
ticipants gave their informed consent to the study. The
application on thyroid carcinomas was carried out on a
public dataset that came from the study of Luzón-Toro
et al. on identification of epistatic interactions in two dif-
ferent types of thyroid carcinomas [23]. Finally, we used
the Wellcome Trust Case-Control Consortium genome-
wide association dataset to study Inflammatory Bowel
Disease.

Results
Simulation studies
In the following, we will refer to the different simulation
settings by using letters as described in Table 1.

Results from the simplified simulation study
Figure 1 shows results obtained for the two settings. The
first column gives the estimated power to detect the gene
interaction as a function of the R2 values. The last two
columns show heatmapmatrices reflecting the proportion
of significant values for each variable and each method
over the 1000 simulations for different R2 values.
In the first setting (Fig. 1a, b), we consider genes 1 and

2, both having main and interaction effects. When the
phenotype is simulated using the Wang Pathway model,
the G-GEE and PLS methods have a higher power to
detect the interaction effect than PCA method, which
tends to identify only the two main effects of the two
genes (Fig. 1a). Whereas for PCA and PLS the power is

Table 1 Effects simulated in each settings and referring names
according to the phenotype simulation model

Settings Names

Id Main effects Interaction effects Wang Pathway model PCA model

1 Genes 1 & 2 Genes 1 x 2 A B

2 Genes 1 & 2 Genes 3 x 4 C D

3 - Genes 1 x 2 E F

4 Genes 1 & 2 - OME

5 - - NE

nondecreasing with R2, for G-GEE we observe a U-shaped
curve. For the smallest R2 values, which correspond to the
most difficult cases, the power of G-GEE to detect the
interaction tends to decrease. When R2 values reach 0.4,
G-GEE’s power to detect the interaction starts to increase.
The situation is different for the main effects, since G-
GEE’s power to detect these increases continuously with
R2 [see Additional file 1]. For PLS, the power to detect the
interaction effect is continuously nondecreasing. Note,
however, that for this method one of the two main effects
(here gene 1) is detected to the detriment of the second,
regardless of the value of R2. In the PCA phenotype simu-
lation model (Fig. 1b), G-GEE has a higher power than the
other methods to detect interaction effects while retaining
a good specificity, whatever the value of R2. The reason-
ably high power of the PCA method can be explained by
the similarity between the phenotype simulation model
and the estimation model. It is worth noting that in this
first setting, only a few variables are falsely significant,
which reflects a good specificity for all methods (the worst
being for the gene 3 × gene 4 interaction variable in the
case of the Wang Pathway model and r2 = 0.1, where the
false discovery rate is 0.068).
In the second setting (Fig. 1c, d), genes 1 and 2 have

only main effects, and genes 3 and 4 have only an inter-
action effect. When the phenotype is simulated using the
Wang Pathway model, the interaction power of G-GEE is
uniformly higher than that of the other methods (Fig. 1c).
For all values of R2, PCA tends to detect false main effects
for genes 3 and 4, but not to detect interaction effects.
In the PCA phenotype simulation (Fig. 1d), PCA has a
good power to detect interaction effects, but once again
these good performances can be explained by the simi-
larity between the simulation model and the estimation
model. The interaction power for G-GEE is lower, but still
good. With this model, only G-GEE tends to attribute a
false main effect to genes 3 and 4. In this second setting,
whatever the phenotype simulation model, the power of
the PLS method is almost null. PLS identifies only the first
gene as having a main effect, while the effects of genes
3 and 4 are not detected, whether as main or as inter-
action effects. Moreover, PLS tends to attribute a false
interaction effect between genes 1 and 2.
To evaluate the performances of the different methods

in a more complex context, we also consider a setting
where we simulate 25 genes with four causal interac-
tions between genes, and two genes with causal main
effects. In these simulations, interaction genes are differ-
ent from main effect genes, and we only consider the case
where R2 = 0.7. The results of this setting reflect the
good performance of the G-GEE method over PCA and
PLS in detecting interaction in a context where further
interactions and different main effects are simulated [see
Additional file 2].
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a

b

c

d

Fig. 1 Power and discoveries under a simplified context. The figures in the first column shows the power to detect interaction effects of the three
methods depending on the R2. The last two columns show the ratio of the number of times where each variable was significant to the total number
of simulations for a given R2. The panels a, b, c and d refer to the different simulation settings described in Table 1
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Results from the realistic simulation study
Figures 2 and 3 show results for the first three settings.
Fig. 2 shows the power to detect gene interaction depend-
ing on the R2, and Fig. 3 shows heatmaps of significant
effects when R2 = 0.2. In both figures, the upper row
relates to phenotypes simulated using the Wang Pathway
model, and the lower row to phenotypes simulated using
the PCA model.
In the first setting (Fig. 2a, b, Fig. 3a, b), the same two

genes (genes 1 and 2) are simulated with main and inter-
action effects. In this setting G-GEE has the best power
to detect interaction effects for all R2 values. The interac-
tion power of PLS remains close to 0.3. The power of PCA
depends on the phenotype simulation model. When the
phenotype is simulated using the Wang Pathway model,
the power is similar to PLS. When it is simulated using
PCA it increases continuously, because of the similarity
between the phenotype simulation model and the estima-
tion model. Looking at the heatmaps (Fig. 3a, b) we can
see that only a few variables are falsely significant. We also
observe that unlike G-GEE, PCA and PLS can detect the
two simulated main effects, with a preference for gene 1 in
the case of PLS. These results are obtained when R2 = 0.2,
but other R2 values give similar results [see Additional
file 3].

In the second setting (Fig. 2c, d, Fig. 3c, d), main effects
are simulated for genes 1 and 2, and one interaction is sim-
ulated between genes 3 and 4. In this setting the power
of PLS to detect interaction effects is almost null, while
the respective powers of PCA and G-GEE are different,
according to which phenotype simulation model is used.
Both methods have a higher power when the phenotype
is simulated using the PCA model. Regarding the detec-
tion of main effects, the results are similar to the first
setting, with G-GEE less successful than PCA and PLS
(Fig. 3c, d). But unlike in the first setting, here some
variables are falsely significant. False detections among
interaction variables are more pronounced for G-GEE and
concern genes that have been simulated to have only main
effects. False detections among main effects are more
pronounced for PCA and PLS when the phenotype is sim-
ulated using the Wang Pathway model and concern genes
that have been simulated to have an interaction effect.
Under the PCA phenotype model, false detections among
main effects are more pronounced for PLS and G-GEE
when R2 values are higher [see Additional file 3].
In the third setting, where only one interaction is simu-

lated between genes 1 and 2, G-GEE has a higher power
to detect interaction than PLS and PCA when the pheno-
type is simulated using theWang Pathway model (Fig. 2e).

a

b

c

d

e

f

Fig. 2 Power under a realistic context. The figures show the power to detect interaction effects of the three methods depending on R2. The panels
a, b, c, d, e and f refer to the different simulation settings described in Table 1
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Fig. 3 Discoveries under a realistic context. Heatmaps of the ratio of the number of times where each variable was significant to the total number of
simulations for R2 = 0.2. The panels a, b, c, d, e and f refer to the different simulation settings described in Table 1

The power of PCA is higher in the PCA phenotype sim-
ulation model because of its similarity to the estimation
model, whereas the power of PLS is almost null (Fig. 2f).
In the Wang Pathway phenotype simulation model, PCA
and PLS both falsely detect main effects. In the PCA phe-
notype simulation model, the false detections are made
by PLS and G-GEE (Fig. 3e, f ). In all cases these false

detections concern genes that are simulated to have an
interaction effect.
Figure 4 shows the results for the fourth and fifth set-

tings. The heatmap on the left corresponds to the fourth
setting, where only two main effects are simulated. We
remark that all methods successfully identify the main
effect, PCA and PLS doing so with a higher power. False

Fig. 4 Discoveries for the fifth and the sixth settings. Heatmaps of the ratio of the number of times where each variable was significant to the total
number of simulations for R2 = 0.4 when only main effects are simulated for gene 1 and gene 2 (left), and when no effects are simulated (right)
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detections corresponding to the respective interaction
effects are observed for G-GEE, and to a lesser extent for
PLS. The figure on the right corresponds to the fifth set-
ting, where no specific effects are simulated and the result
shows that all three methods perform well with very few
false detections.
In all settings, estimating the coefficients with the group

lasso is more computationally expensive than construct-
ing the interaction variables. G-GEE and PCA are quite
similar in terms of computation time, whereas in some
settings PLS has a slightly greater execution time than
other methods. Note that the time required by G-GEE
for constructing the interaction variables varies accord-
ing to the number of SNPs that constitute each gene [see
Additional file 4].

Percentage of R2 attributable to interaction andmain effects
respectively
Using each setting in both simulation studies, we deter-
mine the pI and pM average values that correspond to the
proportion of the R2 attributed to interaction and main
effects, respectively. For most settings, the pI depends
on the number of simulated effects. With one interaction
and two main effects simulated the R2 part attributable
to interaction effects is around 33% (Table 2 (B, C, D),
Table 3 (C, D)). For the setting with numerous effects [see
Additional file 2], the average pI is 67% because we con-
sider four interaction effects for only two main effects.
Finally, as expected, when only interaction effects are sim-
ulated, the average pI is 100% (Table 3 (E, F)) and 0% when
only main effects are simulated (Table 3 (OME)). How-
ever, the R2 distribution between main and interaction
effects is not distinguishable in the setting where the phe-
notype is simulated using the Wang Pathway model with
the same main and interaction effects. The pI and pM val-
ues are all above 90% (Table 2 (A), Table 3 (A)). In the
second simulation study, the R2 distribution is also not
well divided between main and interaction effects when
the phenotype is simulated under the PCA model, though
pM is still higher than pI (Table 3 (B)).

Real data illustrations
Ankylosing spondylitis
Ankylosing spondylitis (AS) is a common form of inflam-
matory arthritis predominantly affecting the spine and
pelvis. It occurs with a prevalence of 0.1% to 1.4%

depending on the considered population [24]. Genetic
factors account for more than 90% of the risk of suscep-
tibility to AS. Human leukocyte antigen (HLA) class I
molecule HLA B27, belonging to the Major Histocompat-
ibility Complex (MHC) region, was the first genetic risk
factor identified as associated with ankylosing spondyli-
tis in the 1970’s [25, 26] and remains the most important
risk locus for this pathology. Despite the strong associa-
tion only a small portion of HLA-B27 carriers develop the
disease. Furthermore, studies in families suggest that less
than 50% of the overall genetic risk is due to HLA-B27,
which suggests that other genetic factors are involved [27].
A number of updated reviews on AS genetics, including
genome-wide association study (GWAS) results, identi-
fied new ankylosing spondylitis-susceptibility genes out-
side of the MHC region [28, 29].
We applied all the methods described above to the AS

dataset. The data contain 408 cases and 358 controls,
and each individual was genotyped for 116, 513 SNPs
with Immunochip technology. For each SNP we obtained
detailed genetic information, such as gene affiliation, with
the NCBI2R package [30] which annotates lists of SNPs
with current information from NCBI. We considered only
SNPs located within a single gene in order to form gene
groups without overlap. We focused our analysis on a list
of 29 genes previously identified as having a main effect in
GWAS.
The three methods tested yield different results, and

only the PLS and G-GEE methods identify interactions.
PCA detects only the main effect HLA-B and identifies
no interactions. PLS detects the main effect HLA-B, but
also identifies one interaction effect between the genes
EOMES and BACH2. Our method G-GEE does not detect
any main effects, but it shows two significant interactions,
the first between the genes HLA-B and SULT1A1 and the
second between IL23R and ERAP2.

Thyroid carcinomas
Thyroid cancers are thought to be related to a number
of environmental and genetic predisposing factors and
can be classified in various types and subtypes. Most
association studies have focused on main effects but
only a limited number of genes were identified. Recently,
some papers focus on the detection of epistatic interac-
tions [23, 31]. We applied our proposed approach on the
two data sets used in Luzón-Toro et al. [23] regarding

Table 2 Average percentage of R2 attributable to interaction and main effects, by setting, in the first simulation study

A B C D

R2=0.7 R2=0.05 R2=0.7 R2=0.05 R2=0.6 R2=0.3 R2=0.7 R2=0.2

pI 97.73 92.08 33.11 32.80 33.32 33.47 33.51 33.57

pM 98.84 95.57 66.42 66.97 66.60 66.57 66.70 66.56
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Table 3 Average percentage of R2 attributable to interaction and main effects, by setting, in the second simulation study

A R2=0.2 B R2=0.2 C R2=0.2 D R2=0.2 E R2=0.2 F R2=0.2 OME R2=0.4

pI 94.01 52.04 33.36 33.27 100 100 0

pM 99.08 78.62 66.60 66.87 0 0 100

two rare tumours, sporadic medullary thyroid carcinoma
(sMTC) and juvenile papillary thyroid carcinoma (jPTC).
Affymetrix Genome-Wide Human SNP 6.0 arrays were
used to hybridized DNA. The data set related to sMTC
contains 66 cases and the jPTC data set 30 cases. The
same 125 healthy controls and 232, 607 SNPs were
used for both studies. As for the ankylosing spondylitis
dataset, we obtained gene affiliation for each SNP with
the NCBI2R package and considered only SNPs located
within a single gene. We focused the analysis of the sMTC
data set on a list of 10 genes, 3 of these genes (CHFR,
AC016582.2 and C8orf37) were chosen following the con-
clusions of Luzón-Toro et al., the others because they
contained markers that were susceptible to be associated
with the disease from univariate analysis. The analysis
of the jPTC data set was realized on a list of 20 genes
among them we can cite DIO, RP11-648K4.2, LOXL1,
DMGDH, PAX8 and STK17B from which epistatic inter-
action were already detected (even if the interaction
between PAX8 and STK17B was identified in a study con-
cerning papillary thyroid and not the juvenile form). The
14 others genes contained susceptible associated individ-
ual markers from univariate analysis. Regarding the sMTC
study, G-GEE identifies one interaction between genes
NCK1 and TRIQK. PCA detects only one main effect
for the gene TRIQK whereas none effects were identified
with PLS. Concerning the jPTC data set, 3 interactions
were identified by G-GEE (NCAM1 and MNDA, MNDA
and STK17B, LOC105370481 and STX3). PLS identi-
fies 2 interactions (LOC105370236 and LOC105370481,
LOC105370236 and PIKFYVE) and PCA detects only one
main effect for the gene LOC105370481. We note that the
effects detected with our approach concerned different
genes that the ones identified in the presented previous
studies (except for the gene STK17B). More analysese are
needed to better understand these differences.

Inflammatory bowel disease
Although the etiology of Inflammatory Bowel Disease
(IBD) is not completely understood, previous studies
have underlined the contribution of an important genetic
susceptibility. Recently, Martinez-Chamorro et al. [32]
detected an epistatic interaction between the genes NOD2
and TLR4. We applied our approach to the Wellcome
Trust Case-Control Consortium genome-wide associa-
tion dataset for Inflammatory Bowel Disease. The data
contains 1949 case for 159 960 SNPs genotyped by

Affymetrix. The control group was constituted of 1972
individuals from the Wellcome Trust Case-Control Con-
sortium genome-wide association dataset for hyperten-
sion. As for the two previous real data analysis, we
obtained gene affiliation for each SNP with the NCBI2R
package and considered only SNPs located within a sin-
gle gene. The analysis was realized on a list of 22 genes
that contain SNPs that are suspected to be associated with
IBD from an univariate analysis. The two genes NOD2
and TLR4 were added to the list as they were previously
detected as having an epistatic interaction. G-GEE iden-
tifies one interaction between the genes LOC105376008
and CACNB2 whereas PCA detects 9 main effects (IL23R,
PODN, ATG16L1, C5orf56, DNAH11, LOC105378282,
HSD17B12, LINC00558, ADCY4) but none interaction.
Finally PLS identifies 3 main effects for the genes IL23R,
PODN and DNAH11 as well as 2 interactions the first one
between the genes PODN and FCRLA, the second one
between PVT1 and NOD2.

Discussion
The results obtained in both simulation studies point to
a certain confusion between main and interaction effects.
When simulated interaction and main effects involve dif-
ferent genes, the methods tend to detect as interaction
effects the pairs of genes simulated to have main effects
and, conversely, to detect as main effects the genes simu-
lated to having interaction effects.
Overall, G-GEE tends to detect more false interactions

than falsemain effect whereas PLS and PCA tend to detect
more false main effects though PLS tends to attribute a
false interaction effect between genes 1 and 2. This type
of confusion may explain the U-shaped power curve for
G-GEE observed in the first simulation study (Fig. 1a). As
the problem becomes harder, the genetic effects of both
genes are preferentially assigned to the interaction effect,
implying a better power to detect interaction where R2

values are small. Finally, we remark that for G-GEE false
detections of main effects are more frequent when the
PCA phenotype simulation model is used, whereas for the
PLS and PCA methods, where the number of false detec-
tions for main effects is higher when the Wang Pathway
phenotype simulation model is used.
Other observations regarding the power of the different

methods can be made with these simulation results. PLS
has more trouble than PCA and G-GEE in detecting inter-
action effects, and has a tendency to detect the first main
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effect with a higher power than the second main effect
when two main effects are simulated. For all methods, the
power to detect interactions increases more slowly with
respect to R2 when simulations are performed using real
data genotypes than with fully simulated genotypes, but
we observe that in the first setting the curve representing
the interaction power of G-GEE is detached from the oth-
ers, reflecting the superior performance of G-GEE over
PLS and PCA. Note that the power of G-GEE to detect
main effects is always less than that of PCA and PLS when
R2 < 0.4 [see Additional file 1 and 5]. In short, G-GEE
performs better when detecting interactions than when
detecting main effects.

Conclusions
In this paper we compared different approaches for
modelling gene-gene epistasis in a penalized regression
framework. Our primary concern was the detection of
interaction effects, and for this purpose we defined a
general model and tested different interaction terms. We
focused our analysis at the gene scale and compared
three ways to design the interaction term. Some methods
were inspired by previous proposed approaches based on
dimensional reduction methods including Principal Com-
ponent Analysis (PCA) and Partial Least Square analysis
(PLS). We additionally proposed a new interaction mod-
eling approach that we called Gene-Gene Eigen-Epistasis
(G-GEE), where one interaction variable is built for each
couple. The interaction variable was defined based on a
criterion that maximizes the covariance between the phe-
notype and the pairwise SNP product matrix of the two
genes. The interaction components were then introduced
in a Group Lasso penalized regression model that takes
the gene structure into account and is capable of handling
a large number of genes simultaneously.
A power study of the different methods based on two

different simulation schemes (simplified and realistic)
provided us with a rich body of information. Across vari-
ous papers in the literature we find comparisons of similar
methods that use different phenotype simulation settings.
In the present work we compared two simulation models.
Our first model was from a previous study [17] that simu-
lated the interaction component of each couple in an SNP
pairwise product fashion. Our second model defined the
interaction component as a pairwise product of represen-
tative variables of each gene. Overall the G-GEE method
performed well in detecting interactions in all the set-
tings that were tested, although it was not always able to
do so in the settings where main and interaction effects
involved different genes. The power of the PCA method
is highly dependent on the phenotype simulation model,
because of the similarity between the second phenotype
simulation model and the estimation model of the PCA

method. The PLS method is characterized by a lack of
power in detecting interactions. PLS performs well only
when the related main effects are also present. When the
simulated main and interaction effects do not concern the
same genes, the detection capability of the PLS approach
collapses dramatically.
For all methods we observed a confusion phenomenon

when active genes are not simulated with both main and
interaction effects. False detections of interactions con-
cern genes that were simulated to have main effects, and
false detections ofmain effects concern genes simulated to
have interaction effects. This phenomenon reveals the dif-
ficulty that all methods encounter in clearly distinguishing
the different types of effects. There are more false main
detections when using methods such as PCA and PLS
that are better at detecting main effects (except when the
phenotype is simulated using the PCA model). As for
interaction effects, the G-GEE methods make more false
interaction detections than PCA and PLS.
When genotypes are fully simulated in the simplified

simulation study, the G-GEE and PCA approaches per-
formed better when the PCA phenotype simulationmodel
was used, whereas the PLS method was not very sensitive
to the choice of phenotype simulation model. Unlike PCA
and PLS, G-GEE is better at detecting interaction effects
than at detecting main effects when simulations use a real
data set. Since the simulation study using realistic data is
meant to mimic real genotype data structure, we conclude
that in a real context G-GEE will be better at detecting
interaction effects than main effects.
In comparison to SNP-SNP interaction approaches, the

gene-scale dimension of our proposedmethodmeans that
considerably fewer interaction variables need to be con-
sidered within a genetic region. This reduction in problem
size allows larger problems to be handled. Moreover, a
penalized regression method allows a true multivariate
approach over a larger number of genes. It also extends
other proposed gene-scale approaches, such as that pre-
sented by Wang et al. [8]. The ability to handle a relatively
large number of genes simultaneouslymakes the detection
of interactions between different genetic regions possible.
This might be useful as an initial step, prior to using SNP-
SNP interaction methods that may provide more accurate
information.
As the G-GEE method is not able yet to consider all

human genes at the same time, it is necessary to specify
a list of genes to be explored for potential interactions.
Given that its power to detect main effects is low, for the
detection of main effects it will be safer to use previously
acquired knowledge of the genetic effects, or to use a pre-
processing method. Another limitation of the method is
gene size. Computing the gene Eigen-Epistasis vector for
two genes of size pr and ps requires an n × (prps) matrix
to be computed.
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Prospects are improving the G-GEE method’s perfor-
mance by optimizing the computational cost and explor-
ing new interaction functions to be plugged into the
G-GEE criterion.
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generated by the Wellcome Trust Case-Control Consortium. A full list of the
investigators who contributed to the generation of the data is available from
www.wtccc.org.uk.
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Titre : Approches statistiques pour la détection d’épistasie dans les études
d’associations pangénomiques

Mots clefs : épistasie, études d’associations pangénomiques, régression en grande dimension

Résumé : De nombreux travaux de recherche
portent sur la détection et l’étude des interac-
tions dans les études d’association pangénomique
(GWAS). La plupart des méthodes proposées se
concentrent principalement sur les interactions en-
tre polymorphismes simples de l’ADN (SNPs),
mais des stratégies de regroupement peuvent égale-
ment être envisagées.
Dans cette thèse, nous développons une approche
originale pour la détection des interactions à
l’échelle des gènes. De nouvelles variables représen-
tant les interactions entre deux gènes sont définies
à l’aide de méthodes de réduction de dimension.
Ainsi, toutes les informations apportées par les

marqueurs génétiques sont résumées au niveau du
gène. Ces nouvelles variables d’interaction sont en-
suite introduites dans un modèle de régression. La
sélection des effets significatifs est réalisée à l’aide
d’une méthode de régression pénalisée basée sur
le Group LASSO avec contrôle du taux de fausse
découvertes.
Nous comparons les différentes méthodes de mod-
élisation des variables d’interaction à travers des
études de simulations afin de montrer les bonnes
performances de notre approche. Enfin, nous illus-
trons son utilisation pratique pour identifier des
interactions entre gènes en analysant deux jeux de
données réelles.

Title : Statistical approaches to detect epistasis in genome wide association
studies.

Keywords : epistasis, GWAS, high dimensional regression

Abstract : A large amount of research has been
devoted to the detection and investigation of
epistatic interactions in Genome-Wide Association
Studies (GWAS). Most of the literature focuses
on interactions between single-nucleotide polymor-
phisms (SNPs), but grouping strategies can also be
considered.
In this thesis, we develop an original approach for
the detection of interactions at the gene level. New
variables representing the interactions between two
genes are defined using dimensionality reduction
methods. Thus, all information brought from ge-

netic markers is summarized at the gene level.
These new interaction variables are then intro-
duced into a regression model. The selection of
significant effects is done using a penalized regres-
sion method based on Group LASSO controlling
the False Discovery Rate.
We compare the different methods of modeling in-
teraction variables through simulations in order to
show the good performance of our proposed ap-
proach. Finally, we illustrate its practical use for
identifying gene-gene interactions by analyzing two
real data sets.
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