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Complex diseases

Monogenic disease Complex disease

/)

m

Manolio et al. J Clin Invest. 2008 ;118(5):1590-1605.
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Genome-Wide Association Studies

GWAS characteristics:

@ Objective: find associations between genetic markers
(SNP; ; € {0,1,2}) and a phenotypic trait (Y; € {0,1} or Y; € R)

Patients k e = ‘ Non-patients
LANY/ b E

Patient DNA Non-patient DNA

¥

Compare
differences
to discover

SNPs associated
with diseases

Disease-specific SNPS Non-disease SNPS
©Pasieka, Science Photo Library
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General context
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Genome-Wide Association Studies

GWAS characteristics:

@ Objective: find associations between genetic markers
(SNP; ; € {0,1,2}) and a phenotypic trait (Y; € {0,1} or Y; € R)

Genetic markers » SNP

Patients k ‘ Non-patients

=5y &5 AN Y]

Patient DNA Non-patient DNA

¥ N

Compare
differences
to discover

SNPs associated
with diseases

https://genomainternational.com

Disease-specific SNPS Non-disease SNPS
©Pasieka, Science Photo Library
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General context
oe

Genome-Wide Association Studies

SNP analysis
Differences between cases and controls at a specific SNP

~logi(p)

o121 15 18 17 18 1920 22

Chromosomes

Genome Wide Asso

Studies
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General context
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Genome-Wide Association Studies

SNP analysis
Differences between cases and controls at a specific SNP

~logi(p)

115 18 17 18 1920 22

7 8
Chromosomes

Factors:

GWAS limits:
@ High dimension (p » n)

@ Reproductibility

@ Genetic factors missing @ Small effects
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Conclusions

Application

Evaluation and comparison

A new method

General context

Genome-Wide Association Studies

SNP analysis
Differences between cases and controls at a specific SNP

115 18 17 18 1920 22

~logi(p)

7 8
Chromosomes

Missing heritability factors:
@ Non consideration of rare variants
(MAF < 0.1%)
@ Non consideration of structural variants
(insertion, deletion, copy numbers...)

GWAS limits:
@ Reproductibility

@ Genetic factors missing
@ Missing heritability

@ Incorrect estimation measure of heritability
@ Complex structure of genetic data

on Studies
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General context
0000000

Epistasis - Definition

Epistasis: Interaction of alleles effects from different markers

locus 2 bb bB BB
locus 1
aa 0 0 0
aA 0 1 1
AA 0 1 1
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General context A new method uation and comparison Application
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Epistasis - Definition

Epistasis: Interaction of alleles effects from different markers

locus 2 bb bB BB
locus 1
aa 0 0 0
aA 0 1 1
AA 0 1 1

Different definitions according to disciplines with two major distinctions:
Biological epistasis

Statistical epistasis
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Epistasis - Deﬁmtlon

Biological epistasis:
Physical interaction at the individual level

Individual

Phenotype

Biological
Epistasis

Moore & Williams Bioessays 2005 ;27(6):637-646.
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General context
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Epistasis - Definition

Statistical epistasis:
Deviation from additive effects of genetic variants at the population level

Population

* Aﬁﬁ A&\* &ﬁ
zfsuza&-: zsn

== e —— .__

Epistasis

&q“w o
1 o o A

Moore & Williams Bioessays 2005 ;27(6):637-646.
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Epistasis - Definition

Statistical epistasis:
Deviation from additive effects of genetic variants at the population level

Population

K AR 4K M‘ﬁ'

Aa An An AR

" I R g%
Aa AR AL AR

8
=)
-

Moore & Williams Bioessays 2005 ;27(6):637-646.
A possible model:

logit[P(y = 1|x1,x2)] = fo + B1x1 + Baxa + Ba3x1x2
with

@ y a binary phenotype
@ x1,X> the individual effect of both markers
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Epistasis - Definition

Statistical epistasis:
Deviation from additive effects of genetic variants at the population level

Population
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Aa An An AR
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Aa AR AL AR

8
=)
-

Moore & Williams Bioessays 2005 ;27(6):637-646.
A possible model:

logit[P(y = 1|x1,x2)] = fo + B1x1 + Baxa + T3x1%2
with

@ y a binary phenotype
@ x1,X> the individual effect of both markers
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Epistasis - Challenges to detect it

Methodological
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Epistasis - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs
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Epistasis - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs
- Curse of dimensionality
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EpIStaSIS - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs

> Curse of dimensionality
> Correlation (linkage disequilibrium):

@ between observed markers
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Epistasis - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs

> Curse of dimensionality
> Correlation (linkage disequilibrium):

@ between observed markers
@ between observed and causal markers
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EpIStaSIS - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs

> Curse of dimensionality
> Correlation (linkage disequilibrium):

@ between observed markers
@ between observed and causal markers

> Distinction between marginal and interaction effects
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EplstaS|s - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs

> Curse of dimensionality
> Correlation (linkage disequilibrium):

@ between observed markers
@ between observed and causal markers

> Distinction between marginal and interaction effects

Interpretation
- Moving from statistical estimate of epistasis to biological epistasis
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EpIStaSIS - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs

> Curse of dimensionality
> Correlation (linkage disequilibrium):

@ between observed markers
@ between observed and causal markers

> Distinction between marginal and interaction effects
Interpretation

- Moving from statistical estimate of epistasis to biological epistasis

Epistasis is ubiquitous in human biology
Investigation indispensable to understand genetic data
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General context A new method and comparison
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EplstaS|s - Challenges to detect it

Methodological
> 5 x 101! pairwise interactions to investigate for a GWAS with 10° SNPs

> Curse of dimensionality
> Correlation (linkage disequilibrium):

@ between observed markers
@ between observed and causal markers

> Distinction between marginal and interaction effects

Interpretation
- Moving from statistical estimate of epistasis to biological epistasis

Epistasis is ubiquitous in human biology
Investigation indispensable to understand genetic data

Large number of approaches proposed
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General context
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Epistasis - A variety of methods

Bitwise computing

Computer cluster
aggregating interaction tests

Random Forest

Group LASSO
LD contrast tests LLASSO

Neural Networh
Co-association (GL./Y\ Bavesian

Paradllelization

Lodi PLS .
Mernel pig ogic regression

€ pca SUM
0Odds ratio contrast tests

Data Mining

Pendlized regression
Entropy
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General context A new method Evaluation and comparison Application Conclusions
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Epistasis - Scale of interactions

Existing methods: » mainly SNP x SNP
- some at a group scale

Advantages of group scale

GI’OUp definition: approaches;

- genes - genetic effects more detectable
- haplotypes - reduce the number of variables
> .. - consideration of the correlation

> results biologically interpretable

Control 1 TGAACCCGCCA....CTTCGGGGTAC....TAGTCGACCGC
Control 2 TGAACTCGCCA....CTTCGGGGTAC....TAGTCTACCGC

’ Chromosome Casel TGAACICGCCA....CTTCGAGGTAC....CAGTCTACCGC
“/ Case2 TGAACITCGCCA...ATTCGAGGTAC....CAGTCGCACCGC
N,\%,g(/vﬁ Control 1 7 CCGTG
1 Control 2 TCGTT
Gene Casel TCACT
Case 2 (o]
U.S. National Library of Medicine LbGene G
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General context
000000

Epistasis - Gene scale methods

Gene level test outside a regression framework:

o Aggregating interaction tests
o Co-association tests
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Epistasis - Gene scale methods

Gene level test outside a regression framework:

o Aggregating interaction tests
@ Co-association tests

Gene level regression based approaches:

PCA
PLS + logistic regression(He 2011, Li 2009, Zhang 2008, Wang T 2009)
Kernel
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Epistasis - Gene scale methods

Gene level test outside a regression framework:

o Aggregating interaction tests
o Co-association tests

Gene level regression based approaches:

PCA
+ penalized regression(D’Angelo 2009, Wang X 2014)
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Epistasis - Gene scale methods

Gene level test outside a regression framework:

o Aggregating interaction tests

@ Co-association tests

Gene level regression based approaches:

PCA
+ penalized regression(D’Angelo 2009, Wang X 2014)

Objectives: To develop a new gene scale method that:

- considers a more accurate definition of interaction variables,
> is applicable to numerous genes,
> resorts to a group penalty
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A new method

Summary

9 A new method
@ General modeling approach
@ Interactions construction
@ Coefficients estimation
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General context A new method Evaluation and comparison Application Conclusions

Group modeling approach

| SNPyy .. SNPi, .. SNPgi .. SNPg,. | Pheno
Indy 1 0 0 1 Y1
Ind> 0 0 2 1 2 We note
. 2 1 1 2 NP: 1 — X
. 0 1 0 0 . SNPL1 = X1
Ind,- 0 2 1 0 yi
geney geneg

gEYIXD =" BenXewns

Main effects

B=|Bra Bz Brpy, s Beug

geney geneg
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General context A new method Evaluation and comparison Application Conclusions

Group modeling approach

| SNPyy .. SNPi, . SNPGi .. SNPg,. | Pheno
Indy 1 0 0 1 Y1
Ind> 0 0 2 1 Y2 We note
. 2 1 1 2 - NPy 1 = X
' : 1 0 o SNP11 1,1
Ind; 0 2 1 0 i r,s two genes
geneq geneg

SEWIXD) =D BepXewy + O VroZrs
g Ppg r,s

Main effects Interaction effects
-
B=|B11,B12, s P1,pys s Bc1, " 7BG,pG Y= Y12 Yic o Y(6-1)6
~—~
geney geneg Y1G,1>"" »Y1G,q

q: # of interaction variables for a couple
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A new method
[ eJe]e]

Interaction variables construction:

Based on literature proposal:

methods criteria interaction term
Principal Component analysis (PCA) | var(X,v) and var(Xsv) 2;7:1 P YT Tk
Partial Least Square (PLS) cov?(YX, ¢, Xsw) TaETe
Canonical Correlation Analysis (CCA) cor(Xra, Xsb) 7:1 YPUV;

V. Stanislas Statistical approaches to detect epistasis in Genome Wide Association Studies 15 / 54



Interaction variables constructlon

Based on literature proposal:

methods criteria interaction term
Principal Component analysis (PCA) | var(X,v) and var(Xsv) 2;7:1 1Yk TJ’ T;
Partial Least Square (PLS) cov?(YX, ¢, Xsw) Zq 1T
Canonical Correlation Analysis (CCA) cor(Xra, Xsb) j:1 YPU] Vj

Original proposition: Gene-Gene Eigen Epistasis (G-GEE)
We consider f,(X", X®) to represent the interaction between genes r,s.
We can choose f,(X", X*) following two conditions:
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Interactlon varlables constructlon

Based on literature proposal:

methods criteria interaction term
Principal Component analysis (PCA) | var(X,v) and var(Xsv) 7 S YRT] T
Partial Least Square (PLS) cov?(YX,c, Xsw) J 1 '715 T?
Canonical Correlation Analysis (CCA) cor(X,a, Xsb) 27:1 YUV

Original proposition: Gene-Gene Eigen Epistasis (G-GEE)
We consider f,(X", X®) to represent the interaction between genes r,s.
We can choose f,(X", X*) following two conditions:

criteria

> cov?((Xr, Xs), fu(X", X*))

> cov?(y, fu(X", X*))
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Interactlon varlables constructlon

Based on literature proposal:

methods criteria interaction term
Principal Component analysis (PCA) | var(X,v) and var(Xsv) 7 S YRT] T
Partial Least Square (PLS) cov?(YX,c, Xsw) J 1 '715 T?
Canonical Correlation Analysis (CCA) cor(X,a, Xsb) 27:1 YUV

Original proposition: Gene-Gene Eigen Epistasis (G-GEE)
We consider f,(X", X®) to represent the interaction between genes r,s.
We can choose f,(X", X*) following two conditions:

criteria methods

> cov2((Xr, Xs), fu(X", X)) | G-GEE.q

> cov2(y, fu( X", X%)) G-GEE.»
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G:neral context A new method Evaluation and comparison Application
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Interactlon varlables construction: G- GEECl

Conclusions

We set: f,(X", X°) = F*u with F"® = { X! X; } P k=1,-

i1=arg min covi(X, F™u)
u,|lul|=1

with X = (X, X®)
min ||cov[Frsu X]||> = min 1uTF’STXXTF’Su

u,|ul|= u|lull=

u : eigen vector associated to the smallest eigenvalue of F*" XX F™

We then obtain for each couple (r,s) » Z" = F*u
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Interactlon varlables construction: G- GEEC2

We set: f,(X", X*) = F®u with F™ = {XJ } i k=1,-

o= arg anz?IX covi(y, F™u)
i

r”nel’lx ||COV[FrSU y]||2 Wa”x uTFrsTnyFrs
u, u,

U : eigen vector associated to the largest eigenvalue of F™* yyT F's

u:F'STy

We then obtain for each couple (r,s) » Z"* = F*u = F*F"*Ty
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A new method
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Interaction variable modeling approaches comparison

methods criteria interaction term
G-GEE cov3(X, fu(X", X?)) F~u~"
G-GEE., cov?(Y, f, (X", X?)) F®u~"

PCA | var(X,v) and var(X,v) A YET T

PLS cov?(YX,c, Xsw) ;7:1 YET?
CCA cor(X,a, Xsb) iUV
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A new method
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Interaction varlable modeling approaches comparison

methods criteria interaction term
G-GEE cov3(X, fu(X", X?)) F~u~"
G-GEE., cov?(Y, f, (X", X?)) F®u~"

PCA | var(X,v) and var(X,v) A YET T

PLS cov?(YX,c, Xsw) ;7:1 YET?

CCA cor(X,a, Xsb) iUV

E[y|X] ZZ/ngg gpg+27rs r,s

V. Stanislas Statistical approaches to detect epistasis in Genome Wide Association Studies



A new method
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Coefficients estimation

Group LASSO regression

(B,9) = argmin (Z —logL(yi; XiB+Ziy) + A | > vPellBll2+ D vprpsll‘v'sllz} >
Y i g rs
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General context A new method Evaluation and compa Application Conclusions
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Coefficients estimation

Group LASSO regression

(B.:4) = argmin > —logL(yii XiB+ Ziv) + A | > /P&llBEll2+ D v/Brpsl vl
Y i g rs

Limits of the groupLASSO regression:
o P(S*c8) — 1but |5 > |5
n—-+oo

@ Difficult to compute p-value or confidence interval

V. Stanislas Statistical approaches to detect epistasis in Genome Wide Association Studies 19 / 54
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C 00000800 6 5 elelelele

Coefficients estimation

Group LASSO regression

(B,9) = argmin (Z —logL(yi; XiB+Ziy) + A | > vPellBll2+ D vprpsll‘v'slz} >
Y i g rs

Limits of the groupLASSO regression:
o P(S*c8) — 1but |5 > |5
n—-+oo

@ Difficult to compute p-value or confidence interval

Adaptive-Ridge Cleaning Becu JM et al., 2017
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A new method
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Coefficients estimation: Adaptive-Ridge Cleaning

Setting: HO = X3 + Z~
Split randomly H in two subsets Hy and H> of size n/2
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A new method
(o] le}

Coefficients estimation: Adaptive-Ridge Cleaning

Setting: HO = X3 + Z~
Split randomly H in two subsets Hy and H> of size n/2

First stage: Screening on Hi

0 = argmin —logL(y;; H1;0) + X
gr <Z gL(yi; H1i0)

!

gmneﬂz])
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A new method
(o] le}

Coefficients estimation: Adaptive-Ridge Cleaning

Setting: HO = X3 + Z~
Split randomly H in two subsets Hy and H> of size n/2

First stage: Screening on Hi

0 = argmin —logL(y;; H1;0) + X
gr <Z gL(yi; H1i0)

!

gmneﬂz])

> S : support of the selected groups
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Ap |cat|on Conclusions

Coefﬁments estimation: Adaptlve—Rldge Cleamng

Setting: HO = X3 + Z~
Split randomly H in two subsets Hy and H> of size n/2

First stage: Screening on Hi

0 = argmin —logL(y;; H1;0) + X
gr <Z gL(yi; H1i0)

i

Z@Heﬂz])

g

Second stage: Cleaning on H>

6= argmin Z —logL(yi; H2i0) + p
0 ; 0;=0 if jg§

>‘ gz
,. S5 ] )
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A new method
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Coefficients estimation: Adaptive-Ridge Cleaning

Significance of 6: Permutation test based on a Fisher test approach
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Conclusions

Coefﬁments estimation: Adaptlve—Rldge Cleamng

Significance of 0: Permutation test based on a Fisher test approach

F. — Zi(}/i - y;d)2 - Z;(}’i - )7,'9)2
¢ > =972

With:
y . predicted values obtained without the group g
9 predicted values using all groups g € §
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Coefficients estimation: Adaptlve—Rldge Cleamng

Significance of 0: Permutation test based on a Fisher test approach

F. — > ilyi —}7,-“)2 - > _5;/52)2
) S - 90)?

Fr_ iy =9 =il = 0)?
€ Sy = )2

With:
y . predicted values obtained without the group g
9 predicted values using all groups g € §
- predicted values using all groups g € S on the matrix H* of
permuted elements for columns corresponding to group g
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Coefficients estimation: Adaptlve—Rldge Cleamng

Significance of 0: Permutation test based on a Fisher test approach

F. — > ilyi —}7,-“)2 - > _5;/52)2
) S - 90)?

Fr_ iy =9 =il = 0)?
€ Sy = )2

With:
y . predicted values obtained without the group g
9 predicted values using all groups g € §

- predicted values using all groups g € S on the matrix H* of
permuted elements for columns corresponding to group g

Empirical p-values:

1 B
=52 Lr<r)
b=1

with B the number of permutations
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General context A new method Evaluation and comparison Application

Summary

Conclusions

e Evaluation and comparison

Simulation designs and scenarios

Setting parameters

Comparison with G-GEE

Case-control methods comparisons

Non parametric interaction modeling approach
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Simulations design: Genotype

Completely simulated genotype:

X; ~ N,(0,X) with X a block diagonal correlation matrix
(p correlation level for two SNPs in the same gene)

MAF; ~ 1{[0.05,0.5] with fixed MAF; if j causal SNP

Genotype from real data:

From a real data set composed of 763 individuals and 63,340 SNPs
structured in 7216 genes.
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Evaluation and comparison
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Simulations design: Phenotype

from Wang X et al., 2014:

g(Elyil(Xi, Zi)] 0"‘25{; (lei)"_Z’YrS Z U Xik

kec (j,k)ec?

PCA model:

g(E[y,|(X,,Z BO"‘Zﬁg <2Xi> +Z'Yrs

keC
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General context A new method Application Conclusions

Simulations design

Adjustment of the strength of association for continuous outcomes

> ¢; generated from N(0, 02)
> 02 determined from R? coefficient

We note HO = [X, Z] {’2], and R?> = %

We can determined an expression for 2

2 (1= RS (MO — 7
R2(n—2)
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context A new method Application Conclusions

Simulations studies

First comparison: PCA, PLS and CCA
Choosing the parameters

Second comparison: with G-GEE.; and G-GEE,
Using completely simulated genotype
Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions
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Evaluatlon an
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First comparison: methods |ssued of the ||terature

Design: Completely simulated genotype
Continuous phenotype from Wang X et al., 2014

Parameters:
@ Correlation among SNPs p o Number of SNPs by genes
@ MAF values of causal SNPs o Number of causal SNPs by
@ Values of 3 and ~ causal genes
@ Number of components o Number of subjects
° R? e Marginal or/and interaction
@ Number of genes effects
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Evaluation and comparison
[ le]e}

First comparison: methods issued of the literature

Design: Completely simulated genotype
Continuous phenotype from Wang X et al., 2014

Parameters:

° R? o Marginal or/and interaction
effects
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First comparison:

powerMain
00 02 04 06 08 1.0

FPmain
00 02 04 06 08 1.0

CCA PCA PLS

CCA PCA PLS

o MainEff

powerPair
00 02 04 06 08 1.0

|

CCA

FPpair
0.0 02 04 06 08 1.0

O
CCA
° noMainEff

PCA

PCA

Evaluation and comparison

PLS
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Evaluatlon and
slele] lo

First comparison: methods |ssued of the ||terature

Parameters:
°p=08 o Number of SNPs by genes=6
® MAF = 0.2 o Number of causal SNPs by
o B=v=2 causal genes=2
o Number of components =2 o Number of subjects=600
° R? o Marginal or/and interaction
@ Number of genes=6 effects
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Evaluation and comparison
@000

Simulations studies

First comparison: PCA, PLS and CCA
Choosing the parameters

Second comparison: with G-GEE.; and G-GEE.»
Using completely simulated genotype
Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions
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Evaluation and comparison
[o] le]e}

Second comparison: G-GEE and simulated genotypes

1.04 1.04
% 0.8 % 0.8
a a
5 5
o o
[} [}
3 3
Wang model 8 8
001 T T — —2— T T T T T
00 02 04 00 02 04 06 08
R R
* GGEE1 * GGEE2 ¢ CCA 4 PCA = PLS
1.04
a a 0.64
PCA model 3 3
2 2 0.4+
Q Q
o o
0.2
_O/O
0.0 Ko—a—e—8=2=3"x
T T T T T
00 02 04 06 08
R

- Main effects:
gene 1
gene 2

- Interaction effects:
gene 3 x gene 4

> Interaction effects:
gene 1 x gene 2
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Evaluation and comparison
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Discoveries matrix - an example

1.0

Genel —
Gene2 —

Gene3 —
Gene4 —

0.8

Gene5 —

Gene6 —
X.Genel.Gene2 _
X.Genel.Gene3 —
X.Genel.Gene4 —|
X.Genel.Gene5 —
X.Genel.Gene6 —|
X.Gene2.Gene3 —
X.Gene2.Gened —
X.Gene2.Gene5 —
X.Gene2.Gene6 —
X.Gene3.Gene4 —|
X.Gene3.Gene5 —
X.Gene3.Gene6 —|
X.Gened.Gene5 —
X.Gene4.Gene6 —
X.Gene5.Gene6 —

0.6

0.4

0.2

0.0

GGEE PCA PLS
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Second comparison: G-GEE and simulated Genotypes - R2 = 0.2

oress I one
one oo
o e
e oo
— — N ne
Wang model
enect Gone
[— [ —

GGEE1 GGEE2 CCA PCA PLS GGEE1 GGEE2 CCA PCA PLS
R?=0.2 R?=0.2
eness - ones I
enes oness
ones ones
enes ones
s n — —_—
PCA model sk Gon
—_— —_—
. L .
GGEE1 GGEE2 CCA PCA PLS GGEE1 GGEE2 CCA PCA PLS
R?=0.2 R?=0.2
> Main effects:
ene 1
& gene 1 x gene 2 gene 3 x gene 4

gene 2
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Second comparison

Evaluation and comparison
L 1]

G-GEE and real genotypes

Settings .

Wang
simulation
model

PCA
simulation
model

Main effects:

gene 1

gene 2
Interaction effects:

gene 1 x gene 2
10 < GGEE + PCA = PLS

08
06—
0.4
0.2

0.01 | , ,
0.1 0.2 0.3

0.4

1.0

Main effects:
gene 1
gene 2
Interaction effects:
gene 3 x gene 4

~ GGEE ~ PCA = PLS

Main effects:

Interaction effects:
gene 1 x gene 2

- GGEE ~ PCA = PLS
1.0

041
02
0.0

0.1 02 0.3
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Evaluation and comparison
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Second comparison: G-GEE and real genotypes - R?> = 0.2
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Evaluation and comparison
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Simulations studies

First comparison: PCA, PLS and CCA
Choosing the parameters

Second comparison: G-GEE.; and G-GEE.»
Using completely simulated genotype
Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions
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Evaluation and comparison
0@00

Third comparison: Case-control methods

Methods defined outside a regression framework

@ Aggregating tests
> minP (Emily et al. ,2016)
> GATES (Li et al., 2011)

o Co-association test
> PLSPM (Zhang et al., 2013)

o LD based test
> CLD (Rajapakse et al., 2012)

@ Entropy based method
> GBIBM (Li et al., 2015)

Package R: GeneGenelnteR (Emily et al. ,2017)
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Third comparison: Case-control methods

Design:
Real Genotypes
Continuous phenotype simulation from Wang X et al., 2014:

Gene1 Gene1
Gene2 Gene2
Gene3 Gene3
Gene4 Gene4
Gene5 Gene5
Gene6 Gene6 -|
X.Gene1.Gene2 ] X.Gene1.Gene2
X.Gene1.Gene3 - X.Gene1.Gene3 -
X.Gene1.Gene4 X.Gene1.Gene4 -
X.Gene1.Gene5 X.Gene1.Gene5
X.Gene1.Gene6 - X.Gene1.Gene6 -
X.Gene2.Gene3 X.Gene2.Gene3 -
X.Gene2.Gene4 X.Gene2.Gene4
X.Gene2.Gene5 - X.Gene2.Gene5 -
X.Gene2.Gene6 X.Gene2.Gene6
X.Gene3.Gene4 - X.Gene3.Gene4 _
X.Gene3.Gene5 -| X.Gene3.Gene5
X.Gene3.Gene6 X.Gene3.Gene6
X.Gene4.Gene5 X.Gene4.Gene5
X.Gene4.Gene6 X.Gene4.Gene6 -|
X.Gene5.Gene6 - . . . . . , X.Gene5.Gene6 - . . . . . ,
GGEE CLD PLSPM  GBIGM minP GATES GGEE CLD PLSPM  GBIGM minP GATES
Main effects: Main effects:
gene 1 gene 1 x gene 2 gene 1 gene 3 x gene 4

gene 2 - gene 2 -
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Third comparison: Case-control methods

Design:
Completely simulated Genotypes
Continuous phenotype simulation from Wang X et al., 2014:

Genet Genet
Gene2 Gene2

Gene3 Gene3

Gene4 - Gene4

Gene5 - Gene5 -

Gene6 Gene6
X.Gene1.Gene2 I X.Gene1.Gene2
X.Gene1.Gene3 - X.Gene1.Gene3 -
X.Gene1.Gene4 - X.Gene1.Gene4 -
X.Gene1.Gene5 - X.Gene1.Gene5 -
X.Gene1.Gene6 - X.Gene1.Gene6 -
X.Gene2.Gene3 - X.Gene2.Gene3 -
X.Gene2.Gene4 - X.Gene2.Gene4 -
X.Gene2.Gene5 - X.Gene2.Geneb -
X.Gene2.Gene6 - X.Gene2.Gene6 -
X.Gene3.Gene4 - X.Gene3.Gene4 -|
X.Gene3.Gene5 - X.Gene3.Genes5 -
X.Gene3.Gene6 - X.Gene3.Gene6 -
X.Gene4.Gene5 - X.Gene4.Gene5 -
X.Gene4.Gene6 - X.Gene4.Gene6 -
X.Gene5.Gene6 - X.Gene5.Gene6 -

GGEE minP GGEE minP
Main effects: Main effects:
gene 1 gene 1 x gene 2 gene 1 gene 3 x gene 4

gene 2 - gene 2 -




Evaluation and comparison
[ JeJele]

Simulations studies

First comparison: PCA, PLS and CCA
Choosing the parameters

Second comparison: with G-GEE.; and G-GEE.,
Using completely simulated genotype
Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions
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Conclusions

@00

Fourth comparison: Machine Learning based approaches

With G-GEE,», we looked for:

i1 =arg max cov(y, f,(X", X*))

u,||uf=1

with f,(X", X%) = F"u and F's = {X[X5 P2} Pkt s

We now find new functions f,(X", X*°) that maximized the criteria:
Ex v [(y — ful X7, X°))7]

With the following non parametric approaches:
@ Random Forests
@ Boosting
e SVM
@ Neural Network
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Fourth comparison: Machine Le

R?> =0.4

Design:
Real Genotypes
Continuous phenotype simulation from

and comparison

Application
000@0 00000

arning based approaches -

Wang X et al., 2014:

Genet Gene1 =
Gene2 - Gene2 -
Gene3 - Gene3 -
Gene4 - Gene4 -
Gene5 - Genes -
Gene6 - Gene6 -
X.Gene1.Gene2 - I X.Genel.Gene2 -
X.Gene1.Gene3 - X.Gene1.Gene3 -
X.Gene1.Gene4 -| X.Gene1.Gene4 -|
X.Gene1.Gene5 - X.Gene1.Gene5 -
X.Gene1.Gene6 -| X.Gene1.Gene6 -|
X.Gene2.Gene3 - X.Gene2.Gene3 -
X.Gene2.Gene4 - X.Gene2.Gene4 -
X.Gene2.Gene5 | X.Gene2.Gene5 -|
X.Gene2.Gene6 - X.Gene2.Gene6 -
X.Gene3.Gene4 | X.Gene3.Gene4 -
X.Gene3.Gene5 - X.Gene3.Gene5 -
X.Gene3.Gene6 - X.Gene3.Gene6 -
X.Gene4.Gene5 - X.Gene4.Gene5 -
X.Gene4.Gene6 - X.Gene4.Gene6 -
X.Gene5.Gene6 - X.Gene5.Gene6 -
T T T T 1 T T T T 1
GGEE RF RF_F BOOST NN GGEE RF RF_F BOOST NN

Main effects:
gene 1
gene 2

gene 1 x gene 2

V. Stanislas

cal approaches to detect epistasis i

Main effects:
gene 1
gene 2

gene 3 x gene 4
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General context A new method

Fourth comparison: Machine Le

R?> =0.4

Design:
Real Genotypes
Continuous phenotype simulation from

and comparison

Application
0000@ 00000

arning based approaches -

Wang X et al., 2014:

Gene2 - Gene2 -
Gene3 - Gene3 -
Gene4 - Gene4 -
Gene5 - Gene5 -
Gene6 - Gene6 -
X.Gene1.Gene2 - N P X.Genel.Gene2 - ]
X.Gene1.Gene3 -| X.Gene1.Gene3 -|
X.Gene1.Gene4 - X.Gene1.Gene4 |
X.Gene1.Gene5 -| X.Gene1.Gene5 -|
X.Gene1.Gene6 -| X.Gene1.Gene6 -|
X.Gene2.Gene3 - X.Gene2.Gene3 |
X.Gene2.Gene4 -| X.Gene2.Gene4 |
X.Gene2.Gene5 -| X.Gene2.Gene5 -|
X.Gene2.Gene6 -| X.Gene2.Gene6 -|
X.Gene3.Gene4 | X.Gene3.Gene4 |
X.Gene3.Gene5 - X.Gene3.Gene5 -
X.Gene3.Gene6 -| X.Gene3.Gene6 -|
X.Gene4.Gene5 -| X.Gene4.Gene5 -|
X.Gene4.Gene6 -| X.Gene4.Gene6 -|
X.Gene5.Gene6 - . . . . , X.Gene5.Gene6 - . . . . ,
GGEE SVMiin  SVMpol  SVMpol5  SVMrad GGEE SVMiin  SVMpol  SVMpol5  SVMrad

Main effects:
gene 1

gene 1 x gene 2
gene 2 -
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Main effects:
gene 1

gene 3 x gene 4
gene 2 -
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Application

Summary

e Application
@ Ankylosing Spondylitis
@ Crohn’s Disease
@ Analysis and results

V. Stanislas al approaches to detect epistasi: Genome Wide Associ



Ankylosing Spondylitis

Chronic inflammatory disease of the axial skeleton

V.
Ve .2
Epidemiology: {;{\
@ Age at first symptoms: 20 - 30 years 5 f—?(?
@ Sexe: predominance for men (sex ratio 2M:1W) S A
@ Prevalence: depend of populations (0.1% - 1.4%) }/,0

Y

http://batea.com/

Risk factors: HLA complex:

@ Localized on chromosome 6

@ Strong genetic component @ Regroup about 200 genes
(heritability >90%) @ Coding the immunity system
@ Importance of HLA complex @ Antigen HLA-B27 : associated to
SPA
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Crohn's Disease

Form of chronic inflammation bowel disease

Epidemiology: gw?j, ;1
@ Prevalence: 10-30 per 100, 000 o e
(Europe and North America) & D
@ More common in the p— - S e
industrialized world o
@ Median onset of disease: 30 years :g @

Ananthakrishnan, Nat. Rev. Gastroenterol. Hepatol 2015

Genetic factors:
Multiple risk factors: > NOD2, first identified mutation
Envi al - Potential interactions:
o
Mn.wrobr'.nmen a @ NOD2 and TLR proteins
e Microf Iota @ NOD2 and CTLA4
o Genetic @ IL23R and CTLA4

@ NOD2 and IBD5
@ IBD5, ATGL16L1 and IL23R
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Quality controls and filtering

Markers filtering:

SNP call rate < 95%

MAF < 5%

Deviation from Hardy Weinberg Equilibrium in controls (p < 1 x 107°)
Duplicates

SNPs not belonging to one unique gene

Subject filtering:
@ Sample call rate < 93%

@ Duplicates
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Ankylosing Spondylitis

Data set: International Genetics of Ankylosing Spondylitis study

401 cases
357 controls
6 611 genes
51 287 SNPs
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Ankylosing Spondylitis

Data set: International Genetics of Ankylosing Spondylitis study

401 cases

357 controls ':E, * :
6 611 genes T [
51 287 SNPs 1 ; L l .
o elda =
1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 17 19 21
Chromosome
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Ankylosing Spondylitis

Data set: International Genetics of Ankylosing Spondylitis study

401 cases

357 controls E * :
6 611 genes P [
51 287 SNPs 1 L | .
0 aa d 2

1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 17 19 21

Chromosome

- 29 known genes
> 62 genes from an univariate analysis
- 91 genes to investigate
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5 ofo 5 00080 5

Ankylosing Spondylitis

401 cases

357 controls % * :
6 611 genes P [
51 287 SNPs 1 ; L l .
o elda = :
1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 17 19 21
Chromosome

Significant results
G-GEE NKX2-3 x HCG27
PLS HLA-B

HCP5
- 29 known genes HLAB x HCG27

> 62 genes from an univariate analysis PCA HLAB
- 91 genes to investigate EOMES x HCP5
IL1IR2 x MICB

ZFP57 x LOC101929772
TRIM31 x HCG26
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Crohn's Disease

Data set: Wellcome Trust Case-Control Consortium

1938 cases
1500 controls
17 304 genes
140 487 SNPs
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Crohn's Disease

Application
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Data set: Wellcome Trust Case-Control Consortium

1938 cases
1500 controls
17 304 genes
140 487 SNPs

~logio(p)

V. Stanislas

14
12
10

on s o

1 2 3 4 5 6 7 8 9 10 1 12

13 14 15 16

Chromosome
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Crohn's Disease

Application
[efe] ]

Data set: Wellcome Trust Case-Control Consortium

1938 cases
1500 controls
17 304 genes
140 487 SNPs

~logio(p)

- 72 known genes

14
12
10

on s o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chromosome

> 60 genes from an univariate analysis

(22 known)

> 110 genes to investigate
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Crohn's Disease

Data set: Wellcome Trust Case-Control Consortium

14
12

1938 cases ~ 10
1500 controls E 8
17 304 genes v i
140 487 SNPs 2
0
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 18 20 22
Chromosome

Significant results

G-GEE | LOC105369715 x STAT1

> 72 known genes STAT1 x CD6

> 60 genes from an univariate analysis PLS IFNGR1 x SBNO2

(22 known) PCA e ':IF?GDI\i
11 . .

- 110 genes to investigate LOC101929544 x TLR4

BATF x IL10
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General context A new method Evaluation and comparison Application Conclusions
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Conclusions and perspectives

Contributions:
- Proposition of a new Group LASSO framework

- Proposition of an original interaction modeling

Pubication, software and presentations:
- Package G-GEE available on Github

= Stanislas, V., Dalmasso, C., and Ambroise, C. (2017). Eigen-Epistasis for
detecting gene-gene interactions. BMC Bioinformatics, 18(1):54.

> 4 talks and 3 posters in international conferences
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Conclusions and perspectives

Limitations:

- Number of SNPs by genes to analyze

- Computation costs for estimation coefficients
- Choice of the genes to consider

- Confusion phenomenon

> Sensitive to group definition
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Conclusions and perspectives

Perspectives:

> Explore new f,(X", X*) definitions

- Optimization of the computational cost of F'
- New selection of the parameter A

> Using another penalization regression framework
- Gene selection using biological knowledge

> Investigate other grouping definitions
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Thank you for your attention !

tatistique
et énome

> - - ___4
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