

Statistical approaches to detect epistasis in Genome Wide Association Studies

Virginie Stanislas Supervisors: Cyril Dalmasso and Christophe Ambroise

Laboratoire de Mathématiques et Modélisation d'Évry

December 18th, 2017

A new method

Evaluation and comparison

Application

Conclusions

Summary

- General context
 - Complex diseases
 - GWAS
 - Epistasis
- 2 A new method
 - General modeling approach
 - Interactions construction
 - Coefficients estimation
- 3 Evaluation and comparison
 - Simulation designs and scenarios
 - Setting parameters
 - Comparison with G-GEE
 - Case-control methods comparisons
 - Non parametric interaction modeling approach
- Application
 - Ankylosing Spondylitis
 - Crohn's Disease
 - Analysis and results
 - Conclusions

Genera	context

A new method

Evaluation and comparison

Application

Conclusions

Summary

General context

- Complex diseases
- GWAS
- Epistasis
- 2 A new method
 - General modeling approach
 - Interactions construction
 - Coefficients estimation
- 3 Evaluation and comparison
 - Simulation designs and scenarios
 - Setting parameters
 - Comparison with G-GEE
 - Case-control methods comparisons
 - Non parametric interaction modeling approach
- 4 Application
 - Ankylosing Spondylitis
 - Crohn's Disease
 - Analysis and results
 - Conclusions

Complex diseases

A new method

Evaluation and comparison

Application

Conclusions

Monogenic disease

Complex disease

Manolio et al. J Clin Invest. 2008;118(5):1590-1605.

A new method

Evaluation and comparison

Application

Conclusions

Genome-Wide Association Studies

GWAS characteristics:

• **Objective:** find associations between genetic markers $(SNP_{i,j} \in \{0, 1, 2\})$ and a phenotypic trait $(Y_i \in \{0, 1\})$ or $Y_i \in \mathbb{R}$

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Genome-Wide Association Studies

GWAS characteristics:

• **Objective:** find associations between genetic markers $(SNP_{i,j} \in \{0, 1, 2\})$ and a phenotypic trait $(Y_i \in \{0, 1\})$ or $Y_i \in \mathbb{R}$

© Pasieka, Science Photo Library

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Genome-Wide Association Studies

SNP analysis

Differences between cases and controls at a specific SNP

A new method

Evaluation and comparison

Application

Conclusions

Genome-Wide Association Studies

SNP analysis

Differences between cases and controls at a specific SNP

GWAS limits:

Factors:

- Reproductibility
- Genetic factors missing

- High dimension (p » n)
- Small effects

 General context
 A new method
 Evaluation and comparison
 Application

 Genome-Wide Association Studies
 SNP analysis
 Differences between cases and controls at a specific SNP

Chromosomes

GWAS limits:

- Reproductibility
- Genetic factors missing
- Missing heritability

Missing heritability factors:

10 11 12 13 14

- Non consideration of rare variants (MAF < 0.1%)
- Non consideration of structural variants (insertion, deletion, copy numbers...)
- Incorrect estimation measure of heritability

Conclusions

• Complex structure of genetic data

General context	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions
Epistasis - D	Definition			

Epistasis: Interaction of alleles effects from different markers

locus 2 locus 1	bb	bB	BB
аа	0	0	0
aA	0	1	1
AA	0	1	1

General context	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions
Epistasis - [Definition			

Epistasis: Interaction of alleles effects from different markers

locus 2 locus 1	bb	bB	BB
аа	0	0	0
aA	0	1	1
AA	0	1	1

Different definitions according to disciplines with two major distinctions:

Biological epistasis

Statistical epistasis

A new method

Evaluation and comparison

Application

Conclusions

Biological epistasis:

Epistasis - Definition

Physical interaction at the individual level

Moore & Williams Bioessays 2005;27(6):637-646.

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Definition

Statistical epistasis:

Deviation from additive effects of genetic variants at the population level

Moore & Williams Bioessays 2005 ;27(6):637-646.

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Definition

Statistical epistasis:

Deviation from additive effects of genetic variants at the population level

Moore & Williams Bioessays 2005;27(6):637-646.

A possible model:

$$\operatorname{logit}[P(\mathbf{y}=1|\mathbf{x}_1,\mathbf{x}_2)] = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_1 \mathbf{x}_2$$

with

- y a binary phenotype
- $\bullet~\textbf{x}_1,\textbf{x}_2$ the individual effect of both markers

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Definition

Statistical epistasis:

Deviation from additive effects of genetic variants at the population level

Moore & Williams Bioessays 2005;27(6):637-646.

A possible model:

$$\operatorname{logit}[P(\mathbf{y}=1|\mathbf{x}_1,\mathbf{x}_2)] = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_1 \mathbf{x}_2$$

with

- y a binary phenotype
- $\bullet~\textbf{x}_1,\textbf{x}_2$ the individual effect of both markers

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Challenges to detect it

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Challenges to detect it

Methodological

 $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$

General context	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions
Epistasis -	Challenges t	to detect it		

- $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$
- \rightarrow Curse of dimensionality

General context 0000000000	A new method 00000000	Evaluation and comparison	Application	Conclusions
Epistasis - C	Challenges to	detect it		

- $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$
- → Curse of dimensionality
- → Correlation (linkage disequilibrium):
 - between observed markers

General context 0000000000	A new method 00000000	Evaluation and comparison	Application	Conclusions
Epistasis - C	Challenges to	detect it		

- $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$
- \rightarrow Curse of dimensionality
- → Correlation (linkage disequilibrium):
 - between observed markers
 - between observed and causal markers

General context ○○○○○○●○○○	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions
Epistasis - (Challenges to	detect it		

- $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$
- → Curse of dimensionality
- → Correlation (linkage disequilibrium):
 - between observed markers
 - between observed and causal markers
- \rightarrow Distinction between marginal and interaction effects

General context	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions
Epistasis - C	hallenges to	detect it		

- $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$
- \rightarrow Curse of dimensionality
- → Correlation (linkage disequilibrium):
 - between observed markers
 - between observed and causal markers
- $\boldsymbol{\rightarrow}$ Distinction between marginal and interaction effects

Interpretation

 \rightarrow Moving from statistical estimate of epistasis to biological epistasis

General context	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions
Epistasis - C	Challenges to	detect it		

- $ightarrow 5 imes 10^{11}$ pairwise interactions to investigate for a GWAS with 10⁶ SNPs
- \rightarrow Curse of dimensionality
- → Correlation (linkage disequilibrium):
 - between observed markers
 - between observed and causal markers
- \rightarrow Distinction between marginal and interaction effects

Interpretation

 $\boldsymbol{\rightarrow}$ Moving from statistical estimate of epistasis to biological epistasis

Epistasis is ubiquitous in human biology Investigation indispensable to understand genetic data

General context	A new method 00000000	Evaluation and comparison	Application 00000	Conclusions 0000
Epistasis - C	Challenges to	detect it		

- $\rightarrow 5 \times 10^{11}$ pairwise interactions to investigate for a GWAS with $10^{6} \mbox{ SNPs}$
- \rightarrow Curse of dimensionality
- → Correlation (linkage disequilibrium):
 - between observed markers
 - between observed and causal markers
- $\boldsymbol{\rightarrow}$ Distinction between marginal and interaction effects

Interpretation

 \rightarrow Moving from statistical estimate of epistasis to biological epistasis

Epistasis is ubiquitous in human biology Investigation indispensable to understand genetic data

Large number of approaches proposed

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - A variety of methods

Bitwise computing Computer cluster aggregating interaction tests Random Forest Group LASSO LD contrast tests Neural Network Co-association GL/M Bayesian Parallelization PLS Logic regression Kernel Ridge PCA SV/M Odds ratio contrast tests Data Mining Penalized regression Entropy

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Scale of interactions

Existing methods: → mainly SNP × SNP → some at a group scale

Group definition:

- → genes
- → haplotypes
- → ...

Advantages of group scale approaches:

- → genetic effects more detectable
- \rightarrow reduce the number of variables
- \rightarrow consideration of the correlation
- \rightarrow results biologically interpretable

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Gene scale methods

Gene level test outside a regression framework:

- Aggregating interaction tests
- Co-association tests

General context ○○○○○○○○ **A new method**

Evaluation and comparison

Application

Conclusions

Epistasis - Gene scale methods

Gene level test outside a regression framework:

- Aggregating interaction tests
- Co-association tests

Gene level regression based approaches:

Genera	context	
0000000000		

A new method

Evaluation and comparison

Application

Conclusions

Epistasis - Gene scale methods

Gene level test outside a regression framework:

- Aggregating interaction tests
- Co-association tests

Gene level regression based approaches:

PCA PLS Kernel + penalized regression(D'Angelo 2009, Wang X 2014)

General context	A new method	Evaluation and comparison	Application	
000000000				
Epistasis -	Gene scale	methods		

Gene level test outside a regression framework:

- Aggregating interaction tests
- Co-association tests

Gene level regression based approaches:

Objectives: To develop a new gene scale method that:

- \rightarrow considers a more accurate definition of interaction variables,
- \rightarrow is applicable to numerous genes,
- \rightarrow resorts to a group penalty

Conclusions

A new method

Evaluation and comparison

Application

Conclusions

Summary

General context

- Complex diseases
- GWAS
- Epistasis

A new method

- General modeling approach
- Interactions construction
- Coefficients estimation

3 Evaluation and comparison

- Simulation designs and scenarios
- Setting parameters
- Comparison with G-GEE
- Case-control methods comparisons
- Non parametric interaction modeling approach

4 Application

- Ankylosing Spondylitis
- Crohn's Disease
- Analysis and results

Conclusions

A new method

Evaluation and comparison

Application

Conclusions

Group modeling approach

model:

$$g(E[\boldsymbol{y}|\boldsymbol{X}]) = \underbrace{\sum_{g} \sum_{p_g} \beta_{g,p_g} \boldsymbol{X}_{g,p_g}}_{\text{Main effects}}$$

$$\boldsymbol{\beta} = \left(\underbrace{\beta_{1,1}, \beta_{1,2}, \cdots, \beta_{1,p_1}}_{\text{gene}_1}, \cdots, \underbrace{\beta_{G,1}, \cdots, \beta_{G,p_G}}_{\text{gene}_G}\right)^T$$

A new method

Evaluation and comparison

Application

Conclusions

Group modeling approach

model:

$$g(E[\boldsymbol{y}|\boldsymbol{X}]) = \underbrace{\sum_{g} \sum_{p_g} \beta_{g,p_g} \boldsymbol{X}_{g,p_g}}_{\text{Main effects}} + \underbrace{\sum_{r,s} \gamma_{r,s} \boldsymbol{Z}_{r,s}}_{\text{Interaction effects}}$$

$$\boldsymbol{\beta} = \left(\underbrace{\beta_{1,1}, \beta_{1,2}, \cdots, \beta_{1,p_1}}_{gene_1}, \cdots, \underbrace{\beta_{G,1}, \cdots, \beta_{G,p_G}}_{gene_G}\right)^T \qquad \boldsymbol{\gamma} = \left(\boldsymbol{\gamma}_{12}, \cdots, \underbrace{\boldsymbol{\gamma}_{1G}}_{\gamma_{1G,1}, \cdots, \gamma_{1G,q}}, \cdots, \boldsymbol{\gamma}_{(G-1)G}\right)$$

q: # of interaction variables for a couple

A new method

Evaluation and comparison

Application

Conclusions

Interaction variables construction:

Based on literature proposal:

methods	criteria	interaction term
Principal Component analysis (PCA)	$\operatorname{var}(\boldsymbol{X}_{r}\boldsymbol{v})$ and $\operatorname{var}(\boldsymbol{X}_{s}\boldsymbol{v})$	$\sum_{j=1}^q \sum_{k=1}^q oldsymbol{\gamma}^{ m rs}_{jk} oldsymbol{T}^{ m r}_j oldsymbol{T}^{ m s}_k$
Partial Least Square (PLS)	$\operatorname{cov}^2(\boldsymbol{Y}\boldsymbol{X}_r\boldsymbol{c},\boldsymbol{X}_s\boldsymbol{w})$	$\sum_{j=1}^q \gamma_j^{ m rs} {m extsf{T}}_j^{ m rs}$
Canonical Correlation Analysis (CCA)	$cor(\boldsymbol{X}_{r}\boldsymbol{a},\boldsymbol{X}_{s}\boldsymbol{b})$	$\sum_{j=1}^q \gamma_j^{ m rs} oldsymbol{U}_j^{ m r} oldsymbol{V}_j^{ m s}$

A new method

Evaluation and comparison

Application

Conclusions

Interaction variables construction:

Based on literature proposal:

methods	criteria	interaction term
Principal Component analysis (PCA)	$\operatorname{var}(\boldsymbol{X}_{r}\boldsymbol{v})$ and $\operatorname{var}(\boldsymbol{X}_{s}\boldsymbol{v})$	$\sum_{j=1}^q \sum_{k=1}^q oldsymbol{\gamma}^{ m rs}_{jk} oldsymbol{T}^{ m r}_{j} oldsymbol{T}^{ m s}_{k}$
Partial Least Square (PLS)	$\operatorname{cov}^2(\boldsymbol{Y}\boldsymbol{X}_r\boldsymbol{c},\boldsymbol{X}_s\boldsymbol{w})$	$\sum_{j=1}^q \gamma_j^{\prime s} oldsymbol{\mathcal{T}}_j^{\prime s}$
Canonical Correlation Analysis (CCA)	$cor(\boldsymbol{X}_{r}\boldsymbol{a},\boldsymbol{X}_{s}\boldsymbol{b})$	$\sum_{j=1}^q \gamma_j^{\prime s} oldsymbol{U}_j^r oldsymbol{V}_j^s$

Original proposition: Gene-Gene Eigen Epistasis (G-GEE)

We consider $f_u(X^r, X^s)$ to represent the interaction between genes r, s. We can choose $f_u(X^r, X^s)$ following two conditions:

A new method

Evaluation and comparison

Application

Conclusions

Interaction variables construction:

Based on literature proposal:

methods	criteria	interaction term
Principal Component analysis (PCA)	$\operatorname{var}(\boldsymbol{X}_{r}\boldsymbol{v})$ and $\operatorname{var}(\boldsymbol{X}_{s}\boldsymbol{v})$	$\sum_{j=1}^q \sum_{k=1}^q oldsymbol{\gamma}^{ m rs}_{jk} oldsymbol{T}^r_j oldsymbol{T}^s_k$
Partial Least Square (PLS)	$\operatorname{cov}^2(\boldsymbol{Y}\boldsymbol{X}_r\boldsymbol{c},\boldsymbol{X}_s\boldsymbol{w})$	$\sum_{j=1}^q \gamma_j^{ m \prime s} {m au}_j^{ m \prime s}$
Canonical Correlation Analysis (CCA)	$cor(\boldsymbol{X}_{r}\boldsymbol{a},\boldsymbol{X}_{s}\boldsymbol{b})$	$\sum_{j=1}^q \gamma_j^{\prime s} oldsymbol{U}_j^r oldsymbol{V}_j^s$

Original proposition: Gene-Gene Eigen Epistasis (G-GEE)

We consider $f_u(X^r, X^s)$ to represent the interaction between genes r, s. We can choose $f_u(X^r, X^s)$ following two conditions:

criteria

$$\boldsymbol{\rightarrow} \operatorname{cov}^2((\boldsymbol{X}_r, \boldsymbol{X}_s), f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$$

 $\boldsymbol{\rightarrow} \operatorname{cov}^2(\boldsymbol{y}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$
A new method

Evaluation and comparison

Application

Conclusions

Interaction variables construction:

Based on literature proposal:

methods	criteria	interaction term
Principal Component analysis (PCA)	$\operatorname{var}(\boldsymbol{X}_{r}\boldsymbol{v})$ and $\operatorname{var}(\boldsymbol{X}_{s}\boldsymbol{v})$	$\sum_{j=1}^q \sum_{k=1}^q oldsymbol{\gamma}^{ m rs}_{jk} oldsymbol{T}^r_j oldsymbol{T}^s_k$
Partial Least Square (PLS)	$\operatorname{cov}^2(\boldsymbol{Y}\boldsymbol{X}_r\boldsymbol{c},\boldsymbol{X}_s\boldsymbol{w})$	$\sum_{j=1}^q \gamma_j^{\prime s} oldsymbol{\mathcal{T}}_j^{\prime s}$
Canonical Correlation Analysis (CCA)	$\operatorname{cor}(\boldsymbol{X}_{r}\boldsymbol{a},\boldsymbol{X}_{s}\boldsymbol{b})$	$\sum_{j=1}^q \gamma_j^{ m \prime s} oldsymbol{U}_j^{ m \prime} oldsymbol{V}_j^{ m s}$

Original proposition: Gene-Gene Eigen Epistasis (G-GEE)

We consider $f_u(X^r, X^s)$ to represent the interaction between genes r, s. We can choose $f_u(X^r, X^s)$ following two conditions:

criteria	methods
$\boldsymbol{\rightarrow} \operatorname{cov}^2((\boldsymbol{X}_r, \boldsymbol{X}_s), f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$	G-GEE _{c1}
$\boldsymbol{\rightarrow} \operatorname{cov}^2(\boldsymbol{y}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$	$G-GEE_{c2}$

A new method

Evaluation and comparison

Application

Conclusions

Interaction variables construction: $G-GEE_{c1}$

We set:
$$f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s) = \boldsymbol{F}^{rs} \boldsymbol{u}$$
 with $\boldsymbol{F}^{rs} = \{X_{ij}^r X_{ik}^s\}_{i=1\cdots n}^{j=1\cdots, p_r; k=1, \cdots, p_s}$

$$\hat{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}, \|\boldsymbol{u}\|=1} \operatorname{cov}^2(\boldsymbol{X}, \boldsymbol{F}^{rs}\boldsymbol{u})$$

with
$$\boldsymbol{X} = (\boldsymbol{X}^r, \boldsymbol{X}^s)$$

$$\min_{\boldsymbol{u},\|\boldsymbol{u}\|=1} ||\hat{\operatorname{cov}}[\boldsymbol{F}^{rs}\boldsymbol{u},\boldsymbol{X}]||^2 = \min_{\boldsymbol{u},\|\boldsymbol{u}\|=1} \boldsymbol{u}^T \boldsymbol{F}^{rs^T} \boldsymbol{X} \boldsymbol{X}^T \boldsymbol{F}^{rs} \boldsymbol{u}$$

 \boldsymbol{u} : eigen vector associated to the smallest eigenvalue of $\boldsymbol{F}^{rsT}\boldsymbol{X}\boldsymbol{X}^{T}\boldsymbol{F}^{rs}$

We then obtain for each couple $(r, s) \rightarrow \mathbf{Z}^{rs} = \mathbf{F}^{rs} \mathbf{u}$

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Interaction variables construction: $G-GEE_{c2}$

We set:
$$f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s) = \boldsymbol{F}^{rs} \boldsymbol{u}$$
 with $\boldsymbol{F}^{rs} = \{X_{ij}^r X_{ik}^s\}_{i=1\cdots n}^{j=1\cdots, p_r; k=1, \cdots, p_s}$

$$\hat{\boldsymbol{u}} = \arg \max_{\boldsymbol{u}, \|\boldsymbol{u}\|=1} \hat{\operatorname{cov}}^2(\boldsymbol{y}, \boldsymbol{F}^{rs} \boldsymbol{u})$$

$$\max_{\boldsymbol{u},\|\boldsymbol{u}\|=1} ||\hat{cov}[\boldsymbol{F}^{rs}\boldsymbol{u},\boldsymbol{y}]||^2 = \max_{\boldsymbol{u},\|\boldsymbol{u}\|=1} \boldsymbol{u}^T \boldsymbol{F}^{rs}{}^T \boldsymbol{y} \boldsymbol{y}^T \boldsymbol{F}^{rs} \boldsymbol{u}$$

 \boldsymbol{u} : eigen vector associated to the largest eigenvalue of $\boldsymbol{F}^{rsT} \boldsymbol{y} \boldsymbol{y}^T \boldsymbol{F}^{rs}$

$$\boldsymbol{u} = \boldsymbol{F}^{rsT} \boldsymbol{y}$$

We then obtain for each couple $(r, s) \rightarrow \mathbf{Z}^{rs} = \mathbf{F}^{rs} \mathbf{u} = \mathbf{F}^{rs} \mathbf{F}^{rs \top} \mathbf{y}$

A new method

Evaluation and comparison

Application

Conclusions

Interaction variable modeling approaches comparison

methods	criteria	interaction term
G-GEE _{c1}	$\operatorname{cov}^2(\boldsymbol{X}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$	$m{F}^{rs}m{u}\gamma^{rs}$
G-GEE _{c2}	$\operatorname{cov}^2(\boldsymbol{Y}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$	$m{F}^{ m rs}m{u}\gamma^{ m rs}$
PCA	$\operatorname{var}(\boldsymbol{X}_{r}\boldsymbol{v})$ and $\operatorname{var}(\boldsymbol{X}_{s}\boldsymbol{v})$	$\sum_{j=1}^q \sum_{k=1}^q \gamma_{jk}^{\prime s} oldsymbol{T}_j^{\prime} oldsymbol{T}_k^s$
PLS	$\operatorname{cov}^2(\boldsymbol{Y}\boldsymbol{X}_r\boldsymbol{c},\boldsymbol{X}_s\boldsymbol{w})$	$\sum_{j=1}^q \gamma_j^{\prime s} oldsymbol{\mathcal{T}}_j^{\prime s}$
CCA	cor(X _r a , X _s b)	$\sum_{j=1}^q \gamma_j^{ m \prime s} oldsymbol{U}_j^{ m r} oldsymbol{V}_j^{ m s}$

A new method

Evaluation and comparison

Application

Conclusions

Interaction variable modeling approaches comparison

methods	criteria	interaction term
G-GEE _{c1}	$\operatorname{cov}^2(\boldsymbol{X}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$	$m{F}^{rs}m{u}\gamma^{rs}$
G-GEE _{c2}	$\operatorname{cov}^2(\boldsymbol{Y}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$	$m{F}^{rs}m{u}\gamma^{rs}$
PCA	$\operatorname{var}(\boldsymbol{X}_{r}\boldsymbol{v})$ and $\operatorname{var}(\boldsymbol{X}_{s}\boldsymbol{v})$	$\sum_{j=1}^q \sum_{k=1}^q \gamma_{jk}^{\prime s} {m T}_j^{\prime} {m T}_k^s$
PLS	$\operatorname{cov}^2(\boldsymbol{Y}\boldsymbol{X}_r\boldsymbol{c},\boldsymbol{X}_s\boldsymbol{w})$	$\sum_{j=1}^q \gamma_j^{\prime s} oldsymbol{\mathcal{T}}_j^{\prime s}$
CCA	$cor(\boldsymbol{X}_{r}\boldsymbol{a},\boldsymbol{X}_{s}\boldsymbol{b})$	$\sum_{j=1}^q \gamma_j^{ m rs} oldsymbol{U}_j^{ m r} oldsymbol{V}_j^{ m s}$

 $g(E[\boldsymbol{y}|\boldsymbol{X}]) = \sum_{\sigma} \sum_{p_{\sigma}} \beta_{g,p_{g}} \boldsymbol{X}_{g,p_{g}} + \sum_{r,s} \gamma_{r,s} \boldsymbol{Z}_{r,s}$

A new method

Evaluation and comparison

Application

Conclusions

Coefficients estimation

Group LASSO regression

$$(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}}) = \underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} \left(\sum_{i} -\log L(y_{i}; \boldsymbol{X}_{i} \boldsymbol{\beta} + \boldsymbol{Z}_{i} \boldsymbol{\gamma}) + \lambda \left[\sum_{g} \sqrt{p_{g}} ||\boldsymbol{\beta}^{g}||_{2} + \sum_{rs} \sqrt{p_{r} p_{s}} ||\boldsymbol{\gamma}^{rs}||_{2} \right] \right)$$

A new method

Evaluation and comparison

Application

Conclusions

Coefficients estimation

Group LASSO regression

$$(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}}) = \underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} \left(\sum_{i} -\log L(y_i; \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{\gamma}) + \lambda \left[\sum_{g} \sqrt{p_g} || \boldsymbol{\beta}^g ||_2 + \sum_{rs} \sqrt{p_r p_s} || \boldsymbol{\gamma}^{rs} ||_2 \right] \right)$$

Limits of the groupLASSO regression:

•
$$P(S^* \subset \hat{S}) \xrightarrow[n \to +\infty]{} 1 \text{ but } |\hat{S}| \gg |S^*|$$

• Difficult to compute p-value or confidence interval

A new method

Evaluation and comparison

Application

Conclusions

Coefficients estimation

Group LASSO regression

$$(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}}) = \underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} \left(\sum_{i} -\log L(y_i; \boldsymbol{X}_i \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{\gamma}) + \lambda \left[\sum_{g} \sqrt{p_g} || \boldsymbol{\beta}^g ||_2 + \sum_{rs} \sqrt{p_r p_s} || \boldsymbol{\gamma}^{rs} ||_2 \right] \right)$$

Limits of the groupLASSO regression:

- $P(S^* \subset \hat{S}) \underset{n \to +\infty}{\longrightarrow} 1 \text{ but } |\hat{S}| \gg |S^*|$
- Difficult to compute p-value or confidence interval

Adaptive-Ridge Cleaning Becu JM et al., 2017

A new method

Evaluation and comparison

Application

Conclusions

Coefficients estimation: Adaptive-Ridge Cleaning

Setting: $H\theta = X\beta + Z\gamma$ Split randomly H in two subsets H_1 and H_2 of size n/2

A new method

Evaluation and comparison

Application

Conclusions

Coefficients estimation: Adaptive-Ridge Cleaning

Setting: $H\theta = X\beta + Z\gamma$ Split randomly H in two subsets H_1 and H_2 of size n/2

First stage: Screening on H_1

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} \left(\sum_{i} - \log \mathcal{L}(y_i; \boldsymbol{H}_{1i} \boldsymbol{\theta}) + \lambda \left[\sum_{g} \sqrt{p_g} || \boldsymbol{\theta}^g ||_2 \right] \right)$$

A new method ○○○○○●○ Evaluation and comparison

Application

Conclusions

Coefficients estimation: Adaptive-Ridge Cleaning

Setting: $H\theta = X\beta + Z\gamma$ Split randomly H in two subsets H_1 and H_2 of size n/2

First stage: Screening on H_1

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left(\sum_{i} -\log \mathcal{L}(y_{i}; \boldsymbol{H}_{1i} \boldsymbol{\theta}) + \lambda \left[\sum_{g} \sqrt{\boldsymbol{p}_{g}} || \boldsymbol{\theta}^{g} ||_{2} \right] \right)$$

 $\rightarrow \hat{S}$: support of the selected groups

A new method ○○○○○●○ Evaluation and comparison

Application

Conclusions

Coefficients estimation: Adaptive-Ridge Cleaning

Setting: $H\theta = X\beta + Z\gamma$ Split randomly H in two subsets H_1 and H_2 of size n/2

First stage: Screening on H_1

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left(\sum_{i} -\log \mathcal{L}(y_{i}; \boldsymbol{H}_{1i} \boldsymbol{\theta}) + \lambda \left[\sum_{g} \sqrt{\boldsymbol{p}_{g}} || \boldsymbol{\theta}^{g} ||_{2} \right] \right)$$

 $\rightarrow \hat{S}$: support of the selected groups

Second stage: Cleaning on H₂

$$\tilde{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \ ; \ \boldsymbol{\theta}_j = \mathbf{0} \ \text{if} \ j \notin \hat{\mathcal{S}}}{\operatorname{argmin}} \left(\sum_{i} - \log \mathcal{L}(y_i; \boldsymbol{H}_{2i} \boldsymbol{\theta}) + \mu \left[\sum_{g} \sum_{j \in g} \frac{\lambda \sqrt{\rho_g}}{||\hat{\boldsymbol{\theta}}^g||_2} \theta_j^2 \right] \right)$$

 General context
 A new method
 Evaluation and comparison
 Application
 Conclusions

 Cooefficients estimation:
 Adaptive-Ridge Cleaning

Significance of $\tilde{\theta}$: Permutation test based on a Fisher test approach

General context A new method Evaluation and comparison Application Conclusions

Significance of $\tilde{\theta}$: Permutation test based on a Fisher test approach

$$F_{g} = rac{\sum_{i}(y_{i} - \hat{y}_{i}^{\omega})^{2} - \sum_{i}(y_{i} - \hat{y}_{i}^{\Omega})^{2}}{\sum_{i}(y_{i} - \hat{y}_{i}^{\Omega})^{2}}$$

With:

 \hat{y}^{ω} : predicted values obtained without the group g \hat{y}^{Ω} : predicted values using all groups $g \in \hat{S}$ General context A new method Evaluation and comparison Application Conclusions

Significance of $\tilde{\theta}$: Permutation test based on a Fisher test approach

$$F_{g} = rac{\sum_{i}(y_{i} - \hat{y}_{i}^{\omega})^{2} - \sum_{i}(y_{i} - \hat{y}_{i}^{\Omega})^{2}}{\sum_{i}(y_{i} - \hat{y}_{i}^{\Omega})^{2}}$$

$$F_{g}^{*} = rac{\sum_{i} (y_{i} - \hat{y}_{i}^{\omega})^{2} - \sum_{i} (y_{i} - \hat{y}^{\Omega*}_{i})^{2}}{\sum_{i} (y_{i} - \hat{y}^{\Omega*}_{i})^{2}}$$

With:

 \hat{y}^{ω} : predicted values obtained without the group g \hat{y}^{Ω} : predicted values using all groups $g \in \hat{S}$ $\hat{y}^{\Omega*}$: predicted values using all groups $g \in \hat{S}$ on the matrix \boldsymbol{H}^* of permuted elements for columns corresponding to group g General context A new method Evaluation and comparison Application Conclusions

Significance of $\tilde{\theta}$: Permutation test based on a Fisher test approach

$$F_{g} = rac{\sum_{i}(y_{i} - \hat{y}_{i}^{\omega})^{2} - \sum_{i}(y_{i} - \hat{y}_{i}^{\Omega})^{2}}{\sum_{i}(y_{i} - \hat{y}_{i}^{\Omega})^{2}}$$

$$F_{g}^{*} = \frac{\sum_{i} (y_{i} - \hat{y}_{i}^{\omega})^{2} - \sum_{i} (y_{i} - \hat{y}^{\Omega*}_{i})^{2}}{\sum_{i} (y_{i} - \hat{y}^{\Omega*}_{i})^{2}}$$

With:

 \hat{y}^{ω} : predicted values obtained without the group g \hat{y}^{Ω} : predicted values using all groups $g \in \hat{S}$ $\hat{y}^{\Omega*}$: predicted values using all groups $g \in \hat{S}$ on the matrix \boldsymbol{H}^* of permuted elements for columns corresponding to group g

Empirical p-values:

$$p_g = \frac{1}{B} \sum_{b=1}^B \mathbb{1}_{\{F_g \le F_g^{*b}\}}$$

with B the number of permutations

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Summary

General context

- Complex diseases
- GWAS
- Epistasis

2 A new method

- General modeling approach
- Interactions construction
- Coefficients estimation

3 Evaluation and comparison

- Simulation designs and scenarios
- Setting parameters
- Comparison with G-GEE
- Case-control methods comparisons
- Non parametric interaction modeling approach

4 Application

- Ankylosing Spondylitis
- Crohn's Disease
- Analysis and results
- Conclusions

A new method

Evaluation and comparison

Application

Conclusions

Simulations design: Genotype

Completely simulated genotype:

 $X_i \sim \mathcal{N}_{\rho}(\mathbf{0}, \mathbf{\Sigma})$ with $\mathbf{\Sigma}$ a block diagonal correlation matrix (ρ correlation level for two SNPs in the same gene)

 $MAF_j \sim \mathcal{U}[0.05, 0.5]$ with fixed MAF_j if j causal SNP

Genotype from real data:

From a real data set composed of 763 individuals and 63,340 SNPs structured in 7216 genes.

A new method

Evaluation and comparison

Application

Conclusions

Simulations design: Phenotype

from Wang X et al., 2014:

$$g(E[\boldsymbol{y}_i|(\boldsymbol{X}_i, \boldsymbol{Z}_i)]) = \beta_0 + \sum_{g} \beta_g \left(\sum_{k \in \mathcal{C}} X_{ik}^g \right) + \sum_{rs} \gamma_{rs} \left(\sum_{(j,k) \in \mathcal{C}^2} X_{ij}^r X_{ik}^s \right)$$

PCA model:

$$g(E[\boldsymbol{y}_i|(\boldsymbol{X}_i, \boldsymbol{Z}_i)]) = \beta_0 + \sum_g \beta_g \left(\sum_{k \in \mathcal{C}} X_{ik}^g\right) + \sum_{rs} \gamma_{rs} C_{i1}^r C_{i1}^s.$$

Simulations design

A new method

Evaluation and comparison

Application

Conclusions

Adjustment of the strength of association for continuous outcomes

- → ϵ_i generated from $\mathcal{N}(0, \sigma^2)$
- $\rightarrow \sigma^2$ determined from R^2 coefficient

We note
$$\boldsymbol{H}\boldsymbol{\theta} = [\boldsymbol{X}, \boldsymbol{Z}] \begin{bmatrix} \boldsymbol{\beta} \\ \gamma \end{bmatrix}$$
, and $R^2 = \frac{\sum (\boldsymbol{H}_i \boldsymbol{\theta} - \bar{y})^2}{\sum (\boldsymbol{H}_i \boldsymbol{\theta} + \epsilon_i - \bar{y})^2}$

We can determined an expression for σ^2

$$\sigma^{2} = \frac{(1 - R^{2})\sum(H_{i}\theta - \bar{y})^{2}}{R^{2}(n - 2)}$$

A new method

Evaluation and comparison

Application

Conclusions

Simulations studies

First comparison: PCA, PLS and CCA Choosing the parameters

Second comparison: with G-GEE_{c1} and G-GEE_{c2} Using completely simulated genotype Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions

A new method

Evaluation and comparison

Application

Conclusions

First comparison: methods issued of the literature

Design: Completely simulated genotype Continuous phenotype from Wang X et al., 2014

Parameters:

- $\bullet\,$ Correlation among SNPs $\rho\,$
- MAF values of causal SNPs
- ullet Values of eta and γ
- Number of components
- R²
- Number of genes

- Number of SNPs by genes
- Number of causal SNPs by causal genes
- Number of subjects
- Marginal or/and interaction effects

A new method

Evaluation and comparison

Application

Conclusions

First comparison: methods issued of the literature

Design: Completely simulated genotype Continuous phenotype from Wang X et al., 2014

Parameters:

- \bullet Correlation among SNPs ρ
- MAF values of causal SNPs
- Values of eta and γ
- Number of components

• R^2

• Number of genes

- Number of SNPs by genes
- Number of causal SNPs by causal genes
- Number of subjects
- Marginal or/and interaction effects

A new method

Evaluation and comparison

Application

Conclusions

First comparison: methods issued of the literature

Parameters:

- $\rho = 0.8$
- MAF = 0.2
- $oldsymbol{eta}=oldsymbol{\gamma}=2$
- Number of components =2
- R²
- Number of genes=6

- Number of SNPs by genes=6
- Number of causal SNPs by causal genes=2
- Number of subjects=600
- Marginal or/and interaction effects

A new method

Evaluation and comparison

Application

Conclusions

Simulations studies

First comparison: PCA, PLS and CCA Choosing the parameters

Second comparison: with G-GEE_{c1} and G-GEE_{c2} Using completely simulated genotype Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions

A new method Evaluation and comparison Application Second comparison: G-GEE and simulated genotypes

PCA model

→ Main effects:

gene 1

gene 2

gene $1 \times \text{gene } 2$

gene $3 \times \text{gene } 4$

Conclusions

A new method

Evaluation and comparison

Application

Conclusions

Discoveries matrix - an example

→ Main effects:

gene 1 gene 2

→ Interaction effects: gene 1 × gene 2

X.Genes2.Genes6 -

X.Genes3.Genes4 -

X.Genes3.Genes5 -

X.Genes3.Genes6 -

X.Genes4.Genes5 X.Genes4.Genes6 X.Genes5.Genes6

> → Interaction effects: gene 3 × gene 4

PLS

Conclusions

A new method

Evaluation and comparison

Application

Conclusions

Simulations studies

First comparison: PCA, PLS and CCA Choosing the parameters

Second comparison: $G-GEE_{c1}$ and $G-GEE_{c2}$ Using completely simulated genotype Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions

A new method

Evaluation and comparison

Application

Conclusions

Third comparison: Case-control methods

Methods defined outside a regression framework

- Aggregating tests
 - \rightarrow minP (Emily et al. ,2016)
 - \rightarrow GATES (Li et al., 2011)
- Co-association test
 - → PLSPM (Zhang et al., 2013)
- LD based test
 - → CLD (Rajapakse et al., 2012)
- Entropy based method
 - \rightarrow GBIBM (Li et al., 2015)

Package R: GeneGeneInteR (Emily et al. ,2017)

V. Stanislas

A new method

Evaluation and comparison

Application

Conclusions

Third comparison: Case-control methods

Design:

Real Genotypes Continuous phenotype simulation from *Wang X et al., 2014*:

A new method

Evaluation and comparison

Application

Conclusions

Third comparison: Case-control methods

Design:

Completely simulated Genotypes

Continuous phenotype simulation from Wang X et al., 2014:

A new method

Evaluation and comparison

Application

Conclusions

Simulations studies

First comparison: PCA, PLS and CCA Choosing the parameters

Second comparison: with $G-GEE_{c1}$ and $G-GEE_{c2}$ Using completely simulated genotype Using genotype from a real data set

Third comparison: Case-control methods

Fourth comparison: Investigation of new interaction variable definitions
General context	A new method	Evaluati	on and comparison		Application	Co
			000000000000000000000000000000000000000	00		
Fourth	comparison:	Machine	Learning	based	approac	hes h

With $G-GEE_{c2}$, we looked for:

$$\hat{\boldsymbol{u}} = \arg \max_{\boldsymbol{u}, \|\boldsymbol{u}\|=1} cov^2(\boldsymbol{y}, f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s))$$

with $f_u(\mathbf{X}^r, \mathbf{X}^s) = \mathbf{F}^{rs} \mathbf{u}$ and $\mathbf{F}^{rs} = \{X_{ij}^r X_{ik}^s\}_{i=1\cdots n}^{j=1\cdots, p_r; k=1,\cdots, p_s}$

We now find new functions $f_{u}(X^{r}, X^{s})$ that maximized the criteria:

 $E_{X^r,X^s,Y}[(\boldsymbol{y}-f_{\boldsymbol{u}}(\boldsymbol{X}^r,\boldsymbol{X}^s))^2]$

With the following non parametric approaches:

- Random Forests
- Boosting
- SVM
- Neural Network

clusions

Design:

Real Genotypes

Continuous phenotype simulation from Wang X et al., 2014:

Design:

Real Genotypes

Continuous phenotype simulation from Wang X et al., 2014:

A new method

Evaluation and comparison

Application

Conclusions

Summary

General context

- Complex diseases
- GWAS
- Epistasis

2 A new method

- General modeling approach
- Interactions construction
- Coefficients estimation

3 Evaluation and comparison

- Simulation designs and scenarios
- Setting parameters
- Comparison with G-GEE
- Case-control methods comparisons
- Non parametric interaction modeling approach

4 Application

- Ankylosing Spondylitis
- Crohn's Disease
- Analysis and results

Conclusions

A new method

Evaluation and comparison

Application

Conclusions

Ankylosing Spondylitis

Chronic inflammatory disease of the axial skeleton

Epidemiology:

- Age at first symptoms: 20 30 years
- Sexe: predominance for men (sex ratio 2M:1W)
- Prevalence: depend of populations (0.1% 1.4%)

http://b4tea.com/

Risk factors:

- Strong genetic component (heritability >90%)
- Importance of HLA complex

HLA complex:

- Localized on chromosome 6
- Regroup about 200 genes
- Coding the immunity system
- Antigen HLA-B27 : associated to SPA

A new method

Evaluation and comparison

Application

Conclusions

Crohn's Disease

Form of chronic inflammation bowel disease

Epidemiology:

- Prevalence: 10-30 per 100, 000 (Europe and North America)
- More common in the industrialized world
- Median onset of disease: 30 years

Ananthakrishnan, Nat. Rev. Gastroenterol. Hepatol 2015

Multiple risk factors:

- Environmental
- Microbiota
- Genetic

Genetic factors:

- \rightarrow NOD2, first identified mutation
- → Potential interactions:
 - NOD2 and TLR proteins
 - NOD2 and CTLA4
 - IL23R and CTLA4
 - NOD2 and IBD5
 - IBD5, ATGL16L1 and IL23R

A new method

Evaluation and comparison

Application

Conclusions

Quality controls and filtering

Markers filtering:

- SNP call rate \leq 95%
- MAF \leq 5%
- Deviation from Hardy Weinberg Equilibrium in controls ($p < 1 \times 10^{-5}$)
- Duplicates
- SNPs not belonging to one unique gene

Subject filtering:

- Sample call rate \leq 93%
- Duplicates

A new method

Evaluation and comparison

Application

Conclusions

Ankylosing Spondylitis

Data set: International Genetics of Ankylosing Spondylitis study

401 cases 357 controls 6 611 genes 51 287 SNPs

Chromosome

→ 29 known genes

- \rightarrow 62 genes from an univariate analysis
- \rightarrow 91 genes to investigate

- → 29 known genes
- \rightarrow 62 genes from an univariate analysis
- \rightarrow 91 genes to investigate

	Significant results
G-GEE	NKX2-3 × HCG27
PLS	HLA-B
	HCP5
	HLAB × HCG27
PCA	HLA-B
	EOMES × HCP5
	IL1R2 × MICB
	ZFP57 × LOC101929772
	TRIM31 × HCG26

A new method

Evaluation and comparison

Application

Conclusions

Crohn's Disease

Data set: Wellcome Trust Case-Control Consortium

1938 cases 1500 controls 17 304 genes 140 487 SNPs

General context 0000000000	A new method 00000000	Evaluation and comparison	Application	Conclusions
Crohn's Dise	ase			

Data set: Wellcome Trust Case-Control Consortium

General context	A new method	Evaluation and comparison	Application	Conclusions
			00000	
Crohn's D	isease			

Data set: Wellcome Trust Case-Control Consortium

- → 72 known genes
- \rightarrow 60 genes from an univariate analysis
- (22 known)
- \rightarrow 110 genes to investigate

General context 0000000000	A new method 00000000	Evaluation and comparison	Application ○○○○●	Conclusions
Crohn's D	isease			

Data set: Wellcome Trust Case-Control Consortium

- → 72 known genes
- → 60 genes from an univariate analysis (22 known)
- \rightarrow 110 genes to investigate

	Significant results
G-GEE	LOC105369715 × STAT1
	STAT1 × CD6
PLS	IFNGR1 × SBNO2
	IRGM × NOD2
PCA	IRGM
	LOC101929544 × TLR4
	BATF × IL10

A new method

Evaluation and comparison

Application

Conclusions

Summary

General context

- Complex diseases
- GWAS
- Epistasis

2 A new method

- General modeling approach
- Interactions construction
- Coefficients estimation

3 Evaluation and comparison

- Simulation designs and scenarios
- Setting parameters
- Comparison with G-GEE
- Case-control methods comparisons
- Non parametric interaction modeling approach

4 Application

- Ankylosing Spondylitis
- Crohn's Disease
- Analysis and results

A new method

Evaluation and comparison

Application

Conclusions ●○○○

Conclusions and perspectives

Contributions:

- → Proposition of a new Group LASSO framework
- \rightarrow Proposition of an original interaction modeling

Pubication, software and presentations:

- → Package G-GEE available on Github
- → Stanislas, V., Dalmasso, C., and Ambroise, C. (2017). Eigen-Epistasis for detecting gene-gene interactions. BMC Bioinformatics, 18(1):54.
- \rightarrow 4 talks and 3 posters in international conferences

A new method

Evaluation and comparison

Application

Conclusions

Conclusions and perspectives

Limitations:

- \rightarrow Number of SNPs by genes to analyze
- \rightarrow Computation costs for estimation coefficients
- \rightarrow Choice of the genes to consider
- → Confusion phenomenon
- \rightarrow Sensitive to group definition

A new method

Evaluation and comparison

Application

Conclusions

Conclusions and perspectives

Perspectives:

- \rightarrow Explore new $f_{\boldsymbol{u}}(\boldsymbol{X}^r, \boldsymbol{X}^s)$ definitions
- \rightarrow Optimization of the computational cost of $\textbf{\textit{F}}^{rs}$
- \rightarrow Using another penalization regression framework
- \rightarrow Gene selection using biological knowledge
- \rightarrow Investigate other grouping definitions

General context	A new method	Evaluation and comparison	Application	Conclusions
				0000

Thank you for your attention !

Vtatistique énome et

V. Stanislas

Statistical approaches to detect epistasis in Genome Wide Association Studies

54 / 54