Conditional propagation of chaos for mean field systems of interacting neurons

Xavier Erny

Joint work with: Eva Löcherbach and Dasha Loukianova

1Université d’Evry (LaMME)
2Université Paris 1 Panthéon-Sorbonne (SAMM)

SAMM, 5 février 2021
1 Introduction
 - Point process
 - Exchangeability
 - Modeling of neural network

2 Model
 - Definitions of the systems
 - Well-posedness of the limit system

3 Propagation of chaos
 - Martingale problem
 - Convergence of $\left(\mu^N\right)_N$
A point process Z is:

- a random countable set of $\mathbb{R}_+: Z = \{ T_i : i \in \mathbb{N} \}$
- a random point measure on $\mathbb{R}_+: Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$
A point process Z is:

- a random countable set of \mathbb{R}_{+}: $Z = \{ T_i : i \in \mathbb{N} \}$
- a random point measure on \mathbb{R}_{+}: $Z = \sum_{i \in \mathbb{N}} \delta_{T_i}$

A process λ is the stochastic intensity of Z if:

$$\forall 0 \leq a < b, \mathbb{E}[Z([a, b])|\mathcal{F}_a] = \mathbb{E}\left[\int_a^b \lambda_t \, dt \bigg| \mathcal{F}_a\right]$$
Poisson measure

E measurable space
Poisson measure

\[E \text{ measurable space} \]

\[\pi \text{ Poisson measure on } E : \text{random point measure that satisfies} \]

\[\forall A, \pi(A) \] is Poisson variable,
\[\forall A_1, \ldots, A_n \] disjoint, \((\pi(A_1), \ldots, \pi(A_n))\) independent.

Intensity of \(\pi \):
\[\mu(A) = E[\pi(A)] \]
\(\mu \) characterizes the law of \(\pi \).
Poisson measure

E measurable space

π Poisson measure on E: random point measure that satisfies

- $\forall A, \pi(A)$ is Poisson variable,
Poisson measure

E measurable space

π Poisson measure on E: random point measure that satisfies

- $\forall A, \pi(A)$ is Poisson variable,
- $\forall A_1, \ldots, A_n$ disjoint, $(\pi(A_1), \ldots, \pi(A_n))$ independent.

Intensity of π:

$\mu(A) = \mathbb{E}[\pi(A)]$
Poisson measure

E measurable space
$
\pi \text{ Poisson measure on } E : \text{random point measure that satisfies}
$

- $\forall A, \pi(A)$ is Poisson variable,
- $\forall A_1, \ldots, A_n$ disjoint, $(\pi(A_1), \ldots, \pi(A_n))$ independent.

Intensity of π: $\mu(A) = \mathbb{E} [\pi(A)]$
Poisson measure

E measurable space

π Poisson measure on E: random point measure that satisfies

1. $\forall A, \pi(A)$ is Poisson variable,
2. $\forall A_1, \ldots, A_n$ disjoint, $(\pi(A_1), \ldots, \pi(A_n))$ independent.

Intensity of π: $\mu(A) = \mathbb{E}[\pi(A)]$

μ characterizes the law of π
\[\pi \text{ Poisson measure on } \mathbb{R}_+ \times \mathbb{R}_+ \text{ with intensity } dt \cdot dz \]
\(\pi \) Poisson measure on \(\mathbb{R}_+ \times \mathbb{R}_+ \) with intensity \(dt.dz \)

\(\lambda \) predictable and positive process
\[\pi \text{ Poisson measure on } \mathbb{R}_+ \times \mathbb{R}_+ \text{ with intensity } dt \, dz \]

\(\lambda \) predictable and positive process

\[Z(A) = \int_{A \times \mathbb{R}_+} 1_{\{z \leq \lambda(t)\}} d\pi(t, z) \]
\[\pi \text{ Poisson measure on } \mathbb{R}_+ \times \mathbb{R}_+ \text{ with intensity } dt.dz \]
\[\lambda \text{ predictable and positive process} \]
\[Z(A) = \int_{A \times \mathbb{R}_+} 1\{z \leq \lambda(t)\} d\pi(t, z) \]

Then: \(\lambda \) is the stochastic intensity of \(Z \)
Definition

A system of r.v. \((X_i)_{i \in I}\) is exchangeable if:

for all finite permutation \(\sigma\), \(L((X_i)_{i \in I}) = L((X_{\sigma(i)})_{i \in I})\)
Definition

A system of r.v. \((X_i)_{i \in I}\) is exchangeable if:

For all finite permutation \(\sigma\), \(L(\{X_i\}_{i \in I}) = L(\{X_{\sigma(i)}\}_{i \in I})\)

Basic example: i.i.d. \(\Rightarrow\) exchangeable
Exchangeable system

Definition

A system of r.v. \((X_i)_{i \in I}\) is exchangeable if:

for all finite permutation \(\sigma\), \(\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\sigma(i)})_{i \in I})\)

Basic example: i.i.d. \(\Rightarrow\) exchangeable

Theorem (de Finetti’s theorem)

Let \((X_i)_{i \in I}\) infinite and exchangeable. Then there exists a random measure \(\mu\) such that, conditionally on \(\mu\) the system \((X_i)_{i \in I}\) is i.i.d. \(\mu\)–distributed
Exchangeable system

Definition

A system of r.v. \((X_i)_{i \in I}\) is exchangeable if:
for all finite permutation \(\sigma\),
\[\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\sigma(i)})_{i \in I})\]

Basic example: i.i.d. \(\Rightarrow\) exchangeable

Theorem (de Finetti’s theorem)

Let \((X_i)_{i \in I}\) infinite and exchangeable. Then there exists a random measure \(\mu\) such that, conditionally on \(\mu\) the system \((X_i)_{i \in I}\) is i.i.d. \(\mu\)-distributed

- \(\mu\) is unique a.s.
- \(\mu\) is the directing measure of \((X_i)_{i \in I}\)
Modeling in neuroscience

Neural activity = Set of spike times
Modeling in neuroscience

Neural activity $=$ Set of spike times
 $=$ Point process (i.e. random set of \mathbb{R}_+)
Neural activity \equiv Set of spike times
\equiv Point process (i.e. random set of \mathbb{R}_+)

Spike rate depends on the potential of the neuron
Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons
Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of N neurons:

$Z^{N,i} = \text{set of spike times of neuron } i$

= point process with intensity $f(X^{N,i}_{t-})$

$X^{N,i} = \text{potential of neuron } i$
Modeling in neuroscience

Neural activity = Set of spike times
= Point process (i.e. random set of \mathbb{R}_+)

Spike rate depends on the potential of the neuron

Each spike modifies the potential of the neurons

Network of N neurons:

$Z^N,i =$ set of spike times of neuron i

= point process with intensity $f(X^N,i)$

$X^N,i =$ potential of neuron i

Here, X^N,i solves an SDE directed by $(Z^N,j)_{1 \leq j \leq N}$
Mean field limit

\(N \)-particle system:

\[
Z^{N,i}_t = \int_0^t \int_0^{\infty} 1 \{ z \leq f(X^{N,i}_s) \} \, d\pi^i(s, z)
\]

\[
dX^{N,i}_t = b(X^{N,i}_t) \, dt + \sum_{j=1}^{N} \int_0^{\infty} u^{ji}(t)1 \{ z \leq f(X^{N,j}_t) \} \, d\pi^j(t, z)
\]

\(\pi^j \) iid Poisson measures with intensity \(dt \cdot dz \)
Mean field limit

N–particle system:

- $Z_{t}^{N,i} = \int_{0}^{t} \int_{0}^{\infty} 1\{z \leq f(X_{s-}^{N,i})\} d\pi^{i}(s, z)$

- $dX_{t}^{N,i} = b(X_{t}^{N,i}) dt + \sum_{j=1}^{N} \int_{0}^{\infty} u^{ji}(t) 1\{z \leq f(X_{t-}^{N,j})\} d\pi^{j}(t, z)$

π^{j} iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty \implies$ rescale the sum:
Mean field limit

N–particle system :

- $Z_{t}^{N,i} = \int_{0}^{t} \int_{0}^{\infty} 1\{z \leq f(X_{s_{-}}^{N,i})\} d\pi^{i}(s, z)$

- $dX_{t}^{N,i} = b(X_{t}^{N,i}) dt + \sum_{j=1}^{N} \int_{0}^{\infty} u^{ji}(t) 1\{z \leq f(X_{t_{-}}^{N,j})\} d\pi^{j}(t, z)$

π^{j} iid Poisson measures with intensity $dt \cdot dz$

Study the limit $N \to \infty$ \Rightarrow rescale the sum :

- linear scaling N^{-1} (LLN) :

 [Delattre et al. (2016)] (Hawkes process, $u^{ji}(t) = 1$),
 [Chevallier et al. (2017)] ($u^{ji}(t) = w(j, i)$)
Mean field limit

\(N \)-particle system :

\[
Z_t^{N,i} = \int_0^t \int_0^\infty 1\{z \leq f(X_s^{N,i})\} \, d\pi^i(s, z)
\]

\[
dX_t^{N,i} = b(X_t^{N,i}) \, dt + \sum_{j=1}^N \int_0^\infty u^{ji}(t) 1\{z \leq f(X_t^{N,j})\} \, d\pi^j(t, z)
\]

\(\pi^j \) iid Poisson measures with intensity \(dt \cdot dz \)

Study the limit \(N \to \infty \implies \) rescale the sum :

- linear scaling \(N^{-1} \) (LLN) :

 [Delattre et al. (2016)] (Hawkes process, \(u^{ji}(t) = 1 \)),

 [Chevallier et al. (2017)] (\(u^{ji}(t) = w(j, i) \))

- diffusive scaling \(N^{-1/2} \) (CLT) :

 [E. et al. (2019)] random and centered \(u^{ji}(s) \)
Linear scaling

\[dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N} \sum_{j=1, j\neq i}^{N} \int_{0}^{\infty} 1\{z \leq f(X_t^{N,j})\} d\pi^j(t, z) \]

\[- \int_{0}^{\infty} X_t^{N,i} 1\{z \leq f(X_t^{N,i})\} d\pi^i(t, z) \]

\[\pi^j \text{ iid Poisson measures with intensity } dt \cdot dz \]
Linear scaling

\[dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N} \sum_{j=1}^{N} \int_{0}^{\infty} 1\{z \leq f(X_t^{N,j})\} d\pi^j(t, z) + \int_{0}^{t} X_{t-}^{N,i} 1\{z \leq f(X_{t-}^{N,i})\} d\pi^i(t, z) \]

\[\pi^j \text{ iid Poisson measures with intensity } dt \cdot dz \]

Interpretation:

- **drift**: \(-\alpha x\) models an exponential loss of the potential
- **small jump of order** \(N^{-1}\): the effect of spike of one neuron to the potential of the others
- **reset jump**: the effect of spike of one neuron to its potential

\[\text{[De Masi et al. (2015)] and [Fournier & Locherbach (2016)]} \]

\[\text{Generalization to McKean-Vlasov frame [Andreis et al. (2018)]} \]

Xavier ERNY
Linear scaling

\[dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{N} \sum_{j=1}^{N} \int_{0}^{\infty} 1\{z \leq f(X_t^{N,j})\} d\pi^j(t, z) \]

\[- \int_{0}^{\infty} X_t^{N,i} 1\{z \leq f(X_t^{N,i})\} d\pi^i(t, z) \]

\(\pi^j \) iid Poisson measures with intensity \(dt \cdot dz \)

Interpretation:

- **drift**: \(-\alpha x\) models an exponential loss of the potential
- **small jump of order** \(N^{-1} \): the effect of spike of one neuron to the potential of the others
- **reset jump**: the effect of spike of one neurone to its potential

[De Masi et al. (2015)] and [Fournier & Löcherbach (2016)]

Generalization to McKean-Vlasov frame [Andreis et al. (2018)]
Diffusive scaling

\[dX_t^{N,i} = -\alpha X_t^{N,i} \, dt + \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_0^\infty \int_{\mathbb{R}} u \mathbb{1}_{\{z \leq f(X_t^{N,j})\}} \, d\pi^j(t, z, u) \]

\[- \int_0^\infty \int_{\mathbb{R}} X_t^{N,i} \mathbb{1}_{\{z \leq f(X_t^{N,i})\}} \, d\pi^i(t, z, u) \]

\(\pi^j \) iid Poisson measures with intensity \(dt \cdot dz \cdot d\nu(u) \)

\(\nu \) probability measure on \(\mathbb{R} \) centered with \(\int_{\mathbb{R}} |u|^3 d\nu(u) < \infty \)

\(\sigma^2 = \int_{\mathbb{R}} u^2 d\nu(u) \)
Diffusive scaling

\[
\begin{align*}
 dX_t^{N,i} &= -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{0}^{\infty} \int_{\mathbb{R}} u 1\{z \leq f(X_t^{N,j})\} \, d\pi^j(t, z, u) \\
 &\quad - \int_{0}^{\infty} \int_{\mathbb{R}} X_{t-}^{N,i} 1\{z \leq f(X_t^{N,i})\} \, d\pi^i(t, z, u)
\end{align*}
\]

\(\pi^j\) iid Poisson measures with intensity \(dt \cdot dz \cdot d\nu(u)\)
\(\nu\) probability measure on \(\mathbb{R}\) centered with \(\int_{\mathbb{R}} |u|^3 d\nu(u) < \infty\)
\(\sigma^2 = \int_{\mathbb{R}} u^2 d\nu(u)\)

Dynamic of \(X^{N,i}\):
- \(X_t^{N,i} = X_s^{N,i} e^{-\alpha(t-s)}\) if the system does not jump in \([s, t]\)
- \(X_t^{N,i} = X_{t-}^{N,i} + \frac{U}{\sqrt{N}}\) if a neuron \(j \neq i\) emits a spike at \(t\)
- \(X_t^{N,i} = 0\) if neuron \(i\) emits a spike at \(t\)
Limit system: heuristic (1)

\[dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j=1 \atop j \neq i}^{N} \int_{\mathbb{R}_+ \times \mathbb{R}} u 1\{z \leq f(X_t^{N,j})\} d\pi^j(t, z, u) \]

\[-X_{t^-}^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} 1\{z \leq f(X_t^{N,i})\} d\pi^i(t, z, u) \]
Limit system: heuristic (1)

\[dX^N_{t,i} = -\alpha X^N_{t,i} dt + \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbf{1}\{z \leq f(X^N_{t,j})\} d\pi^j(t, z, u) \]

\[-X^N_{t-} \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbf{1}\{z \leq f(X^N_{t-})\} d\pi^i(t, z, u) \]
Limit system: heuristic (1)

\[
dX_t^{N,i} = -\alpha X_t^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbf{1}_{\{z \leq f(X_t^{N,j})\}} d\pi^j(t, z, u)
\]

\[
- X_t^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} 1 \{z \leq f(X_t^{N,i})\} d\pi^i(t, z, u)
\]

\[
M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u \mathbf{1}_{\{z \leq f(X_s^{N,j})\}} d\pi^j(s, z, u)
\]
Limit system : heuristic (1)

\[dX^N_{t,i} = -\alpha X^N_{t,i} \, dt + \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{\mathbb{R}^+ \times \mathbb{R}} u1\{z \leq f(X^N_{t,j})\} \, d\pi^j(t, z, u) \]

\[- X^N_{t-} \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(X^N_{t-})\} \, d\pi^i(t, z, u) \]

\[M^N_t := \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}^+ \times \mathbb{R}} u1\{z \leq f(X^N_{s,j})\} \, d\pi^j(s, z, u) \]

\[d\bar{X}_t = -\alpha \bar{X}_t \, dt + d\bar{M}_t \]

\[- \bar{X}_{t-} \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(\bar{X}_{t-})\} \, d\pi^i(t, z, u) \]
Limit system: heuristic (2)

\[M^N_t := \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R} \times \mathbb{R}} u^1 \{ z \leq f(X^N_{s,j}) \} d\pi^j(s, z, u) \]
Limit system : heuristic (2)

\[M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u_1 \{ z \leq f(X_{s-N}^j) \} d\pi^j(s, z, u) \]

\(\bar{M} \) is an integral wrt a BM \(W \)
Limit system : heuristic (2)

\[M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u1 \{ z \leq f(X_{s-N}^j) \} \, d\pi^j(s, z, u) \]

\(\tilde{M} \) is an integral w.r.t. a BM \(W \)

\[\langle \tilde{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^{N} f(X_{s-N}^j) \, ds \]
Limit system: heuristic (2)

\[M_t^N := \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} u1 \left\{ z \leq f(X^{N,j}_s) \right\} d\pi^j(s, z, u) \]

\(\tilde{M} \) is an integral wrt a BM \(W \)

\[\langle \tilde{M} \rangle_t = \lim_N \langle M^N \rangle_t = \lim_N \sigma^2 \int_0^t \frac{1}{N} \sum_{j=1}^{N} f(X^{N,j}_s) ds \]

Then \(\tilde{M} \) should satisfy

\[\tilde{M}_t = \sigma \int_0^t \sqrt{\lim_N \frac{1}{N} \sum_{j=1}^{N} f(\bar{X}^j_s) dW_s} = \sigma \int_0^t \sqrt{\lim_N \bar{\mu}^N_s(f) dW_s} \]

with \(\bar{\mu}^N := \frac{1}{N} \sum_{j=1}^{N} \delta \bar{X}_j \)
Limit system: heuristic (3)

\[\tilde{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} \, dW_s \quad \text{where} \quad \mu = \lim_{N} \mu^N \]
Limit system: heuristic (3)

\[\tilde{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s \text{ where } \mu = \lim_{N} \tilde{\mu}_N \]

\[d\tilde{X}^i_t = -\alpha \tilde{X}^i_t dt + \sigma \sqrt{\mu_t(f)} dW_t \]

\[-\tilde{X}^i_{t_-} \int_{\mathbb{R}_+ \times \mathbb{R}} 1\{z \leq f(\tilde{X}^i_{t_-})\} d\pi^i(t, z, u) \]
Limit system: heuristic (3)

\[\tilde{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s \quad \text{where} \quad \mu = \lim_{N} \bar{\mu}^N \]

\[d\tilde{X}_t^i = -\alpha \tilde{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \]
\[- \tilde{X}_t^- \int \mathbb{R}^+ \times \mathbb{R} 1_{\{z \leq f(\tilde{X}_t^-)\}} d\pi^i(t, z, u) \]

\(\mu \) is the limit of empirical measures of \((\tilde{X}^i)_{i \geq 1}\) exchangeable by Proposition (7.20) of [Aldous (1983)] \(\mu \) is the directing measure of \((\tilde{X}^i)_{i \geq 1}\) (conditionally on \(\mu \), \(\tilde{X}^i \) i.i.d. \(\sim \) \(\mu \))
Limit system: heuristic (3)

\[\tilde{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s \text{ where } \mu = \lim_N \mu^N \]

\[d\tilde{X}_t^i = -\alpha \tilde{X}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t \]
\[\quad - \tilde{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbbm{1}_{\{z \leq f(\tilde{X}_{t-}^i)\}} d\pi^i(t, z, u) \]

\(\mu \) is the limit of empirical measures of \((\tilde{X}^i)_{i \geq 1}\) exchangeable by Proposition (7.20) of [Aldous (1983)] \(\mu \) is the directing measure of \((\tilde{X}^i)_{i \geq 1}\) (conditionally on \(\mu \), \(\tilde{X}^i \) i.i.d. ~ \(\mu \))

Conditionally on \(W \), the \(\tilde{X}^i \) \((i \geq 1)\) are i.i.d.
by Lemma (2.12) of [Aldous (1983)] \(\mu = \mathcal{L}(\tilde{X}^1|W) = \mathcal{L}(\tilde{X}^i|W) \)
Limit system: heuristic (3)

\[\bar{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s \text{ where } \mu = \lim_N \bar{\mu}^N \]

\[d\bar{X}^i_t = -\alpha \bar{X}^i_t dt + \sigma \sqrt{\mu_t(f)} dW_t \]
\[-\bar{X}^i_t \int_{\mathbb{R}^+ \times \mathbb{R}} 1_{\{z \leq f(\bar{X}^i_{t^-})\}} d\pi^i(t, z, u) \]

\(\mu \) is the limit of empirical measures of \((\bar{X}^i)_{i \geq 1}\) exchangeable by Proposition (7.20) of [Aldous (1983)] \(\mu \) is the directing measure of \((\bar{X}^i)_{i \geq 1}\) (conditionally on \(\mu, \bar{X}^i\) i.i.d. \(\sim \mu\))

Conditionally on \(W\), the \(\bar{X}^i\) \((i \geq 1)\) are i.i.d. by Lemma (2.12) of [Aldous (1983)] \(\mu = \mathcal{L}(\bar{X}^1|W) = \mathcal{L}(\bar{X}^i|W)\)
Limit system: heuristic (3)

\[\tilde{M}_t = \sigma \int_0^t \sqrt{\mu_s(f)} dW_s \text{ where } \mu = \lim_{N} \tilde{\mu}^N \]

\[d\tilde{X}_t^i = -\alpha \tilde{X}_t^i dt + \sigma \sqrt{\mathbb{E} [f(\tilde{X}_t^i) | W]} dW_t \]

\[-\tilde{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\{z \leq f(\tilde{X}_{t-}^i)\}} d\pi^i(t, z, u) \]

\(\mu \) is the limit of empirical measures of \((\tilde{X}_i^i)_{i \geq 1}\) exchangeable by Proposition (7.20) of [Aldous (1983)] \(\mu \) is the directing measure of \((\tilde{X}_i^i)_{i \geq 1}\) (conditionally on \(\mu \), \(\tilde{X}_i^i \) i.i.d. \(\sim \) \(\mu \))

Conditionally on \(W \), the \(\tilde{X}_i^i \) \((i \geq 1) \) are i.i.d.
by Lemma (2.12) of [Aldous (1983)] \(\mu = \mathcal{L}(\tilde{X}_1^1 | W) = \mathcal{L}(\tilde{X}_i^i | W) \)
Well-posedness of the limit equation (1)

\[d\tilde{X}_t^i = -\alpha \tilde{X}_t^i dt + \sigma \sqrt{\mathbb{E} \left[f(\tilde{X}_t^i) | \mathcal{W} \right]} dW_t \]

\[- \tilde{X}_t^i - \int_{\mathbb{R}_+ \times \mathbb{R}} 1\{z \leq f(\tilde{X}_t^-)\} d\pi^i(t, z, u) \]

Problems:

- conditional expectation in the Brownian term (McKean-Vlasov frame)
- unbounded jumps (non-Lipschitz compensator \(x \mapsto -xf(x) \))
- jump term and Brownian term
Well-posedness of the limit equation (1)

\[
d\tilde{X}_t^i = -\alpha \tilde{X}_t^i dt + \sigma \sqrt{\mathbb{E} \left[f(\tilde{X}_t^i) | W \right]} dW_t \\
- \tilde{X}_{t-}^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1\{z \leq f(\tilde{X}_{t-}^i)\} d\pi^i(t, z, u)
\]

Problems:
- conditional expectation in the Brownian term (McKean-Vlasov frame)
- unbounded jumps (non-Lipschitz compensator \(x \mapsto -xf(x) \))
- jump term and Brownian term

Solution: consider \(a : \mathbb{R} \rightarrow \mathbb{R}_+ \) increasing, bounded, lower-bounded, \(C^2 \) such that

\[
|a''(x) - a''(y)| + |a'(x) - a'(y)| \\
+ |xa'(x) - ya'(y)| + |f(x) - f(y)| \leq C|a(x) - a(y)|
\]
Well-posedness of the limit equation (2)

\[
a(\bar{X}_t^i) = a(\bar{X}_0^i) - \alpha \int_0^t \bar{X}_s^i a'(\bar{X}_s^i) ds + \sigma \int_0^t a'(\bar{X}_s^i) \sqrt{\mathbb{E}[f(\bar{X}_s^i)|W]} dW_s \\
+ \frac{\sigma^2}{2} \int_0^t a''(\bar{X}_s^i) \mathbb{E}[f(\bar{X}_s^i)|W] ds \\
+ \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^i)] 1\{z \leq f(\bar{X}_{s-}^i)\} d\pi^i(s, z, u)
\]
Well-posedness of the limit equation (2)

\[
a(\tilde{X}_t^i) = a(\tilde{X}_0^i) - \alpha \int_0^t \tilde{X}_s^i a'(\tilde{X}_s^i) ds + \sigma \int_0^t a'(\tilde{X}_s^i) \sqrt{\mathbb{E}[f(\tilde{X}_s^i)|W]} dW_s
\]

\[
+ \frac{\sigma^2}{2} \int_0^t a''(\tilde{X}_s^i) \mathbb{E}[f(\tilde{X}_s^i)|W] ds
\]

\[
+ \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} [a(0) - a(\tilde{X}_{s-}^i)] 1 \{z \leq f(\tilde{X}_{s-}^i)\} d\pi^i(s, z, u)
\]

To prove trajectory uniqueness:

- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\tilde{X}_s^i)|]\) (problem with Brownian term)
- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\tilde{X}_s^i)|^2]\) (problem with jump term)
Well-posedness of the limit equation (2)

\[a(\bar{X}_t^i) = a(\bar{X}_0^i) - \alpha \int_0^t \bar{X}_s^i a'(\bar{X}_s^i) ds + \sigma \int_0^t a'(\bar{X}_s^i) \sqrt{\mathbb{E}[f(\bar{X}_s^i)|W]} dW_s \]

\[+ \frac{\sigma^2}{2} \int_0^t a''(\bar{X}_s^i) \mathbb{E}[f(\bar{X}_s^i)|W] ds \]

\[+ \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} [a(0) - a(\bar{X}_{s-}^i) \mathbb{1}_{\{z \leq f(\bar{X}_{s-}^i)\}} d\pi^i(s, z, u) \]

To prove trajectorial uniqueness:

- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\bar{X}_s^i)|] \) (problem with Brownian term)
- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\bar{X}_s^i)|^2] \) (problem with jump term)

Idea of [Graham (1992)] : \(u(t) = \mathbb{E} \left[\sup_{0 \leq s \leq t} |a(\hat{X}_s^i) - a(\bar{X}_s^i)| \right] \)
Well-posedness of the limit equation (2)

\[a(\bar{X}_{t}^i) = a(\bar{X}_0^i) - \alpha \int_0^t \bar{X}_s^i a'(\bar{X}_s^i) ds + \sigma \int_0^t a'(\bar{X}_s^i) \sqrt{\mathbb{E}[f(\bar{X}_s^i)|W]} dW_s \]
\[+ \frac{\sigma^2}{2} \int_0^t a''(\bar{X}_s^i) \mathbb{E}[f(\bar{X}_s^i)|W] ds \]
\[+ \int_{[0,t] \times \mathbb{R}^+ \times \mathbb{R}} [a(0) - a(\bar{X}_{s^-}^i)] 1_{\{z \leq f(\bar{X}_{s^-}^i)\}} d\pi^i(s, z, u) \]

To prove trajectorial uniqueness:

- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\check{X}_s^i)|] \) (problem with Brownian term)
- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\check{X}_s^i)|^2] \) (problem with jump term)

Idea of [Graham (1992)]: \(u(t) = \mathbb{E} \left[\sup_{0 \leq s \leq t} |a(\hat{X}_s^i) - a(\check{X}_s^i)| \right] \)

\(\forall t \geq 0, u(t) \leq C(t + \sqrt{t})u(t) \)
Well-posedness of the limit equation (2)

\[
a(\tilde{X}_t^i) = a(\tilde{X}_0^i) - \alpha \int_0^t \tilde{X}_s^i a'(\tilde{X}_s^i) \, ds + \sigma \int_0^t a'(\tilde{X}_s^i) \sqrt{\mathbb{E}[f(\tilde{X}_s^i)\mid W]} \, dW_s \\
+ \frac{\sigma^2}{2} \int_0^t a''(\tilde{X}_s^i) \mathbb{E}[f(\tilde{X}_s^i)\mid W] \, ds \\
+ \int_{[0,t] \times \mathbb{R}_+ \times \mathbb{R}} \left[a(0) - a(\tilde{X}_s^-^i)\right]1_{\{z \leq f(\tilde{X}_s^-^i)\}} \, d\pi^i(s, z, u)
\]

To prove trajectorial uniqueness:

- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\tilde{X}_s^i)|] \) (problem with Brownian term)
- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\tilde{X}_s^i)|^2] \) (problem with jump term)

Idea of [Graham (1992)]: \(u(t) = \mathbb{E}\left[\sup_{0 \leq s \leq t} |a(\hat{X}_s^i) - a(\tilde{X}_s^i)|\right] \)

\(\forall t \geq 0, u(t) \leq C(t + \sqrt{t})u(t) \implies \exists t_0 > 0, u(t_0) = 0 \)
Well-posedness of the limit equation (2)

\[
a(\bar{X}_t^i) = a(\bar{X}_0^i) - \alpha \int_0^t \bar{X}_s^i a'(\bar{X}_s^i) ds + \sigma \int_0^t a'(\bar{X}_s^i) \sqrt{\mathbb{E}[f(\bar{X}_s^i)|W]} dW_s + \frac{\sigma^2}{2} \int_0^t a''(\bar{X}_s^i) \mathbb{E}[f(\bar{X}_s^i)|W] ds + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}} [a(0) - a(\bar{X}_s^-)] I(z \leq f(\bar{X}_s^-)) d\pi^i(s, z, u)
\]

To prove trajectorial uniqueness:

- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\check{X}_s^i)|] \) (problem with Brownian term)
- \(u(t) = \mathbb{E}[|a(\hat{X}_s^i) - a(\check{X}_s^i)|^2] \) (problem with jump term)

Idea of [Graham (1992)] : \(u(t) = \mathbb{E} \left[\sup_{0 \leq s \leq t} |a(\hat{X}_s^i) - a(\check{X}_s^i)| \right] \)

\(\forall t \geq 0, u(t) \leq C(t + \sqrt{t}) u(t) \implies \exists t_0 > 0, u(t_0) = 0 \)

Iteratively \(\forall n \in \mathbb{N}, u(nt_0) = 0, \) whence \(\forall t > 0, u(t) = 0 \)
Discussion about the function f

Any $f \in C_b^1(\mathbb{R}, \mathbb{R}_+)$ satisfying $f'(x) \leq C(1 + |x|)^{-(1+\epsilon)}$ ($\epsilon > 0$)
Discussion about the function f

Any $f \in C^1_b(\mathbb{R}, \mathbb{R}_+)$ satisfying $f'(x) \leq C(1 + |x|)^{-(1+\varepsilon)}$ ($\varepsilon > 0$)

$f(x) = c + d \arctan(\alpha + \beta x)$ satisfy the hypothesis
Discussion about the function f

Any $f \in C^1_b(\mathbb{R}, \mathbb{R}_+)$ satisfying $f'(x) \leq C(1 + |x|)^{(1+\varepsilon)}$ ($\varepsilon > 0$)

$f(x) = c + d \arctan(\alpha + \beta x)$ satisfy the hypothesis

\[X_{N, i} > x_0 \approx X_{N, i} < x_0 \]
Discussion about the function \(f \)

Any \(f \in C^1_b(\mathbb{R}, \mathbb{R}_+) \) satisfying \(f'(x) \leq C(1 + |x|)^{-(1+\varepsilon)} \) (\(\varepsilon > 0 \))

\[
f(x) = c + d \arctan(\alpha + \beta x)
\]

satisfy the hypothesis

"Neuron \(i \) active / inactive" \(\approx "X^{N,i} > x_0 \) / \(X^{N,i} < x_0" \)
Simulations of $X^{N,1}$

- $N = 10$
- $N = 1000$
Another version of the limit system

The strong limit system:

\[d\bar{X}_t^i = -\alpha \bar{X}_t^i \, dt + \sigma \sqrt{\mathbb{E} \left[f(\bar{X}_t^i) \right]} \, dW_t \]

\[- \bar{X}_t^i - \int_{\mathbb{R}^+ \times \mathbb{R}} 1_{\{z \leq f(\bar{X}_{t-}^i)\}} \, d\pi^i(t, z, u) \]
Another version of the limit system

The strong limit system:

\[
d\tilde{X}_t^i = -\alpha \tilde{X}_t^i dt + \sigma \sqrt{\mathbb{E} \left[f(\tilde{X}_t^i) \mid W \right]} dW_t
- \tilde{X}_t^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\{z \leq f(\tilde{X}_{t-}^i)\}} d\pi^i(t, z, u)
\]

The weak limit system:

\[
d\tilde{Y}_t^i = -\alpha \tilde{Y}_t^i dt + \sigma \sqrt{\mu_t(f)} dW_t
- \tilde{Y}_t^i \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\{z \leq f(\tilde{Y}_{t-}^i)\}} d\pi^i(t, z, u)
\]

where \(\mu_t = \mathcal{L}(\tilde{Y}_t^1 \mid \mu_t)\) is the directing measure of \((\tilde{Y}_t^i)_{i \geq 1}\)
Equivalence between the two systems

An auxiliary system:

\[d\tilde{X}_t^{N,i} = -\alpha \tilde{X}_t^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\tilde{X}_t^{N,j})} dW_t \]

\[- \tilde{X}_t^{N,i} \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(\tilde{X}_t^{N,j})\} d\pi^i(t, z, u) \]
Equivalence between the two systems

An auxiliary system:

\[
\begin{align*}
 d\tilde{X}_t^{N,i} &= -\alpha \tilde{X}_t^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\tilde{X}_t^{N,j})} dW_t \\
 &- \tilde{X}_t^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} 1\{z \leq f(\tilde{X}_t^{N,j})\} d\pi^i(t, z, u)
\end{align*}
\]

Let \(u_N(t) = \mathbb{E} \left[\sup_{s \leq t} |a(\tilde{Y}^1_s) - a(\tilde{X}^{N,1}_s)| \right] \)
Equivalence between the two systems

An auxiliary system:

\[
\begin{align*}
 d\tilde{X}_{t}^{N,i} &= -\alpha\tilde{X}_{t}^{N,i}dt + \sigma \sqrt{\frac{1}{N}\sum_{j=1}^{N} f(\tilde{X}_{t}^{N,j})}dW_{t} \\
 &\quad - \tilde{X}_{t-}^{N,i} \int_{\mathbb{R}^{+} \times \mathbb{R}} 1\{z \leq f(\tilde{X}_{t-}^{N,j})\} d\pi^{i}(t, z, u)
\end{align*}
\]

Let \(u_{N}(t) = \mathbb{E} \left[\sup_{s \leq t} |a(\bar{Y}_{s}^{1}) - a(\tilde{X}_{s}^{N,1})| \right] \)

\[
u_{N}(t) \leq C(t + \sqrt{t})u_{N}(t) + \mathcal{C}N^{-1/2} \mu_{s}(f) - N^{-1} \sum_{j=1}^{N} f(\bar{Y}_{s}^{j})
\]
Equivalence between the two systems

An auxiliary system:

\[
d\tilde{X}_t^{N,i} = -\alpha \tilde{X}_t^{N,i} dt + \sigma \sqrt{\frac{1}{N} \sum_{j=1}^{N} f(\tilde{X}_t^{N,j})} dW_t - \tilde{X}_t^{N,i} - \int_{\mathbb{R}_+ \times \mathbb{R}} 1\{z \leq f(\tilde{X}_t^{N,j})\} d\pi^i(t, z, u)
\]

Let \(u_N(t) = \mathbb{E}\left[\sup_{s \leq t} |a(\tilde{Y}_s^1) - a(\tilde{X}_s^{N,1})|\right] \)

\[
u_N(t) \leq C(t + \sqrt{t}) u_N(t) + C N^{-1/2} \mu_s(f) - N^{-1} \sum_{j=1}^{N} f(\tilde{Y}_s^j)
\]

For \(0 \leq t \leq T \) (small enough)

\[
u_N(t) \leq C N^{-1/2} \quad \text{as } N \to \infty
\]
Convergence of \((X^N,i)_{1 \leq i \leq N}\)

\[dX^N,i_t = - \alpha X^N,i_t \, dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u1\{z \leq f(X^N,j)\} \, d\pi^j(t, z, u)\]

\[d\bar{X}^i_t = - \alpha \bar{X}^i_t \, dt + \sigma \sqrt{\mu_t(f)} \, dW_t\]

\[d\bar{X}^i_t = - \bar{X}^i_t \, dt + \sqrt{\mu_t(f)} \, dW_t\]

Goal : \((X^N,i)_{1 \leq i \leq N}\) converges to \((\bar{X}^i)_{i \geq 1}\) in \(D^{\mathbb{N}^*}\)
Convergence of \((X_N^i)_{1 \leq i \leq N}\)

\[
dX_t^{N,i} = -\alpha X_t^{N,i} \, dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u1 \{z \leq f(X_{t-}^{N,j})\} \, d\pi^j(t, z, u) \\
- X_t^{N,i} \int_{\mathbb{R}_+ \times \mathbb{R}} 1 \{z \leq f(X_{t-}^{N,i})\} \, d\pi^i(t, z, u)
\]

\[
d\bar{X}^i_t = -\alpha \bar{X}^i_t \, dt + \sigma \sqrt{\mu_t(f)} \, dW_t \\
- \bar{X}_t^{i} \int_{\mathbb{R}_+ \times \mathbb{R}} 1 \{z \leq f(\bar{X}_{t-}^{i})\} \, d\pi^i(t, z, u)
\]

Goal: \((X^N,i)_{1 \leq i \leq N}\) converges to \((\bar{X}^i)_{i \geq 1}\) in \(D^{\mathbb{N}^*}\)

Equivalent condition (Proposition (7.20) of [Aldous (1983)]):
\(\mu^N := \sum_{j=1}^{N} \delta_{X_N^j}\) converges to \(\mu := \mathcal{L}(\bar{X}^1|W)\) in \(\mathcal{P}(D)\)
Outline of the proof

Step 1. $(\mu^N)_N$ is tight on $\mathcal{P}(D)$
Equivalent condition : $(X^{N,1})_N$ is tight on D
Proof : Aldous’ criterion

Step 2. Identifying the limit distribution of $(\mu^N)_N$
Proof : any limit of μ^N is solution of a martingale problem
Martingale problem: Principle

SDE:

\[dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_t, u)1\{z \leq f(X_t)\} d\pi(t, z, u) \]
Martingale problem: Principle

SDE:
\[dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_t-, u)1_{\{z \leq f(X_t-)\}} d\pi(t, z, u) \]

Martingale problem: for \(g \) smooth

\[g(Y_t) - g(Y_0) - \int_0^t Lg(Y_s)ds \] is a local martingale,

\[Lg(x) = b(x)g'(x) + \frac{1}{2} \sigma(x)^2 g''(x) + f(x) \int_E (g(x + \Phi(x, u)) - g(x)) d\nu(u) \]
Martingale problem: Principle

SDE:

\[dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_{t-}, u) 1_{\{z \leq f(X_{t-})\}} d\pi(t, z, u) \]

Martingale problem: for \(g \) smooth

\[g(Y_t) - g(Y_0) - \int_0^t Lg(Y_s)ds \] is a local martingale,

\[Lg(x) = b(x)g'(x) + \frac{1}{2} \sigma(x)^2 g''(x) + f(x) \int_E (g(x + \Phi(x, u)) - g(x)) d\nu(u) \]

SDE ⇒ martingale problem: Ito’s formula

\[g(X_t) - g(X_0) - \int_0^t Lg(X_s)ds = \int_0^t \sigma(X_s)g'(X_s)dW_s \]

\[+ \int_0^t \int_0^\infty \int_E (g(X_{s-} + \Phi(X_{s-}, u)) - g(X_{s-})) 1_{\{z \leq f(X_{s-})\}} d\tilde{\pi}(s, z, u) \]
Martingale problem : Principle

SDE:
\[dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_{\mathbb{R}_+ \times E} \Phi(X_{t-}, u)1_{\{z \leq f(X_{t-})\}} d\pi(t, z, u) \]

Martingale problem : for \(g \) smooth
\[g(Y_t) - g(Y_0) - \int_0^t Lg(Y_s) ds \]
\[\text{is a local martingale,} \]
\[Lg(x) = b(x)g'(x) + \frac{1}{2} \sigma(x)^2 g''(x) + f(x) \int_E (g(x + \Phi(x, u)) - g(x)) d\nu(u) \]

SDE \Rightarrow \text{martingale problem : Ito’s formula}
\[g(X_t) - g(X_0) - \int_0^t Lg(X_s) ds = \int_0^t \sigma(X_s)g'(X_s)dW_s \]
\[+ \int_0^t \int_0^\infty \int_E (g(X_{s-} + \Phi(X_{s-}, u)) - g(X_{s-})) 1_{\{z \leq f(X_{s-})\}} d\tilde{\pi}(s, z, u) \]

Martingale problem \Rightarrow \text{SDE : representation theorems}
Martingale problem

Given $Q \in \mathcal{P}(\mathcal{P}(D))$ ($Q = \mathcal{L}(\mu)$)
Martingale problem

Given \(Q \in \mathcal{P}(\mathcal{P}(D)) \) (\(Q = \mathcal{L}(\mu) \))

Canonical space \(\Omega := \mathcal{P}(D) \times D^2 \) with \(\omega = (\mu, (Y^1, Y^2)) : \)

Meaning : \((Y^1, Y^2)\) mixture of iid directed by \(\mu \)
Martingale problem

Given $Q \in \mathcal{P}(\mathcal{P}(D))$ ($Q = \mathcal{L}(\mu)$)

Canonical space $\Omega := \mathcal{P}(D) \times D^2$ with $\omega = (\mu, (Y^1, Y^2))$:

Meaning: (Y^1, Y^2) mixture of iid directed by μ

$$P(A \times B) := \int_{\mathcal{P}(D)} 1_A(m)m \otimes m(B)dQ(m)$$
Martingale problem

Given \(Q \in \mathcal{P} (\mathcal{P}(D)) \) (\(Q = \mathcal{L}(\mu) \))

Canonical space \(\Omega := \mathcal{P}(D) \times D^2 \) with \(\omega = (\mu, (Y^1, Y^2)) \):

Meaning: \((Y^1, Y^2) \) mixture of iid directed by \(\mu \)

\[
P(A \times B) := \int_{\mathcal{P}(D)} 1_A(m)m \otimes m(B)dQ(m)
\]

\(Q \) is solution of \((\mathcal{M}) \) if for all \(g \in C^2_b (\mathbb{R}^2) \),

\[
g(Y^1_t, Y^2_t) - g(Y^1_0, Y^2_0) - \int_0^t Lg(\mu_s, Y^1_s, Y^2_s)ds \text{ is a martingale}
\]
Martingale problem

Given $Q \in \mathcal{P}(\mathcal{P}(D)) \ (Q = \mathcal{L}(\mu))$

Canonical space $\Omega := \mathcal{P}(D) \times D^2$ with $\omega = (\mu, (Y^1, Y^2))$:

Meaning: (Y^1, Y^2) mixture of iid directed by μ

$$P(A \times B) := \int_{\mathcal{P}(D)} 1_A(m)m \otimes m(B) dQ(m)$$

Q is solution of (\mathcal{M}) if for all $g \in C^2_b(\mathbb{R}^2)$,

$$g(Y^1_t, Y^2_t) - g(Y^1_0, Y^2_0) - \int_0^t Lg(\mu_s, Y^1_s, Y^2_s) ds$$ is a martingale

$$Lg(m, x^1, x^2) = -\alpha x^1 \partial_1 g(x) - \alpha x^2 \partial_2 g(x) + \frac{\sigma^2}{2} m(f) \sum_{i,j=1}^2 \partial_{i,j}^2 g(x) + f(x^1)(g(0, x^2) - g(x)) + f(x^2)(g(x^1, 0) - g(x))$$
Uniqueness for the martingale problem

Let Q be a solution of (\mathcal{M}). Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i \geq 1}$
Let Q be a solution of (\mathcal{M}). Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}_i)_{i \geq 1}$

$$\mathcal{L}(\mu, \bar{Y}^1, \bar{Y}^2) = P$$ (from the martingale problem)
Uniqueness for the martingale problem

Let Q be a solution of (\mathcal{M}). Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}^i)_{i \geq 1}$

$$\mathcal{L}(\mu, \bar{Y}^1, \bar{Y}^2) = P \text{ (from the martingale problem)}$$

Representation theorems imply (admitted)

$$\forall i \in \{1, 2\}, \ d\bar{Y}^i_t = -\alpha \bar{Y}^i_t dt + \sqrt{\mu_t(f)} dW_t$$

$$- \bar{Y}^i_{t-} \int_{\mathbb{R}^+} 1_{\{z \leq f(\bar{Y}^i_{t-})\}} d\pi^i(t, z)$$
Uniqueness for the martingale problem

Let Q be a solution of (\mathcal{M}). Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\bar{Y}_i)_{i \geq 1}$

$$\mathcal{L}(\mu, \bar{Y}_1, \bar{Y}_2) = P \text{ (from the martingale problem)}$$

Representation theorems imply (admitted)

$$\forall i \in \mathbb{N}^*, \ d\bar{Y}^i_t = -\alpha \bar{Y}^i_t dt + \sqrt{\mu_t(f)} dW_t$$

$$- \bar{Y}^i_{t-} \int_{\mathbb{R}^+} 1_{\{z \leq f(\bar{Y}_{t-}^i)\}} d\pi^i(t, z)$$
Uniqueness for the martingale problem

Let Q be a solution of (\mathcal{M}). Write $Q = \mathcal{L}(\mu)$ where μ is the directing measure of some exchangeable system $(\tilde{Y}^i)_{i \geq 1}$

$\mathcal{L}(\mu, \tilde{Y}^1, \tilde{Y}^2) = P$ (from the martingale problem)

Representation theorems imply (admitted)

$$\forall i \in \mathbb{N}^*, d\tilde{Y}_t^i = -\alpha \tilde{Y}_t^i dt + \sqrt{\mu_t(f)} dW_t$$

$$- \tilde{Y}_t^i - \int_{\mathbb{R}^+} 1\{z \leq f(\tilde{Y}_{t-}^i)\} d\pi^i(t, z)$$

Then the law of $\mu = \mathcal{L}(\tilde{Y}^1|\mathcal{W})$ is uniquely determined
Convergence of μ^N to the solution of (\mathcal{M})

Let μ be the limit of (a subsequence of) μ^N

$\mathcal{L}(\mu)$ is solution of (\mathcal{M}) if

$$
\mathbb{E} [F(\mu)] = 0
$$

for any F of the form

$$
F(m) := \int_{D^2} m \otimes m(d\gamma)\phi_1(\gamma_{s_1})...\phi_k(\gamma_{s_k})\left[\phi(\gamma_t) - \phi(\gamma_s) - \int_s^t L\phi(m_r, \gamma_r)dr\right]
$$
Convergence of μ^N to the solution of (M)

Let μ be the limit of (a subsequence of) μ^N

$L(\mu)$ is solution of (M) if

$$\mathbb{E}[F(\mu)] = 0$$

for any F of the form

$$F(m) := \int_{D^2} m \otimes m(d\gamma)\phi_1(\gamma_{s_1})\ldots\phi_k(\gamma_{s_k})\left[\phi(\gamma_t) - \phi(\gamma_s) - \int_s^t L\phi(m_r, \gamma_r)dr\right]$$
Convergence of μ^N to the solution of (M)

Let μ be the limit of (a subsequence of) μ^N

$\mathcal{L}(\mu)$ is solution of (M) if

$$E[F(\mu)] = 0$$

for any F of the form

$$F(m) := \int_{D^2} m \otimes m(d\gamma) \phi_1(\gamma_{s_1})...\phi_k(\gamma_{s_k}) \left[\phi(\gamma_t) - \phi(\gamma_s) \right]$$

$$+ \alpha \int_s^t \gamma_r^1 \partial_1 \phi(\gamma_r)dr + \alpha \int_s^t \gamma_r^2 \partial_2 \phi(\gamma_r)dr$$

$$- \int_s^t f(\gamma_r^1)(\phi(0, \gamma_r^2) - \phi(\gamma_r))dr - \int_s^t f(\gamma_r^2)(\phi(\gamma_r^1, 0) - \phi(\gamma_r))dr$$

$$- \frac{\sigma^2}{2} \int_s^t m_r(f) \sum_{i_1, i_2=1}^{2} \partial_{i_1, i_2}^2 \phi(\gamma_r)dr$$
The expression of $F(\mu^N)$

\[
F(\mu^N) := \int_{D^2} \mu^N \otimes \mu^N(d\gamma) \phi_1(\gamma_{s_1}) \cdots \phi_k(\gamma_{s_k}) \left[\phi(\gamma_t) - \phi(\gamma_s) \right]
\]
\[
+ \alpha \int_s^t \gamma_r^1 \partial_1 \phi(\gamma_r) dr + \alpha \int_s^t \gamma_r^2 \partial_2 \phi(\gamma_r) dr
\]
\[
- \int_s^t f(\gamma_r^1)(\phi(0, \gamma_r^2) - \phi(\gamma_r)) dr
\]
\[
- \int_s^t f(\gamma_r^2)(\phi(\gamma_r^1, 0) - \phi(\gamma_r)) dr
\]
\[
- \frac{\sigma^2}{2} \int_s^t \mu_r^N(f) \sum_{i_1, i_2=1}^2 \partial_{i_1, i_2}^2 \phi(\gamma_r) dr
\]
The expression of $F(\mu^N)$

\[
F(\mu^N) := \\
\int_{D^2} \mu^N \otimes \mu^N(d\gamma) \phi_1(\gamma_{s_1}) \cdots \phi_k(\gamma_{s_k}) \left[\phi(\gamma_t) - \phi(\gamma_s) \right] \\
+ \alpha \int_s^t \gamma_1^1 \partial_1 \phi(\gamma_r) dr + \alpha \int_s^t \gamma_2^1 \partial_2 \phi(\gamma_r) dr \\
- \int_s^t f(\gamma_r^1)(\phi(0, \gamma_r^2) - \phi(\gamma_r)) dr \\
- \int_s^t f(\gamma_r^2)(\phi(\gamma_r^1, 0) - \phi(\gamma_r)) dr \\
- \frac{\sigma^2}{2} \int_s^t \mu^N_r(f) \sum_{i_1, i_2 = 1}^2 \partial_{i_1, i_2}^2 \phi(\gamma_r) dr
\]
The expression of $F(\mu^N)$

$$F(\mu^N) :=$$

$$\frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^N, i, X_{s_1}^N, j) \cdots \phi_k(X_{s_k}^N, i, X_{s_k}^N, j) \left[\phi(X_t^N, i, X_t^N, j) - \phi(X_s^N, i, X_s^N, j) \right]$$

$$+ \alpha \int_{s}^{t} X_r^N, i \partial_1 \phi(X_r^N, i, X_r^N, j) \, dr + \alpha \int_{s}^{t} X_r^N, j \partial_2 \phi(X_r^N, i, X_r^N, j) \, dr$$

$$- \int_{s}^{t} f(X_r^N, i)(\phi(0, X_r^N, j) - \phi(X_r^N, i, X_r^N, j)) \, dr$$

$$- \int_{s}^{t} f(X_r^N, j)(\phi(X_r^N, i, 0) - \phi(X_r^N, i, X_r^N, j)) \, dr$$

$$- \sigma^2 \frac{2}{2} \int_{s}^{t} \mu_r^N(f) \sum_{i_1, i_2=1}^{2} \partial^2_{i_1, i_2} \phi(X_r^N, i, X_r^N, j) \, dr$$
The expression of $F(\mu^N)$

$$F(\mu^N) :=$$

$$\frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^N, i, X_{s_1}^N, j) \cdots \phi_k(X_{s_k}^N, i, X_{s_k}^N, j) \left[\phi(X_t^N, i, X_t^N, j) - \phi(X_s^N, i, X_s^N, j) \right]$$

$$+ \alpha \int_s^t X_r^N, i \partial_1 \phi(X_r^N, i, X_r^N, j) \, dr + \alpha \int_s^t X_r^N, j \partial_2 \phi(X_r^N, i, X_r^N, j) \, dr$$

$$- \int_s^t f(X_r^N, i)(\phi(0, X_r^N, j) - \phi(X_r^N, i, X_r^N, j)) \, dr$$

$$- \int_s^t f(X_r^N, j)(\phi(X_r^N, i, 0) - \phi(X_r^N, i, X_r^N, j)) \, dr$$

$$- \frac{\sigma^2}{2} \int_s^t \mu_r^N(f) \sum_{i_1, i_2=1}^{2} \partial^2_{i_1, i_2} \phi(X_r^N, i, X_r^N, j) \, dr \right]$$

Xavier ERNY Conditonal propagation of chaos 26 / 32
The expression of $F(\mu^N)$

\[
F(\mu^N) := \\
\frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^{N,i}, X_{s_1}^{N,j}) \cdots \phi_k(X_{s_k}^{N,i}, X_{s_k}^{N,j}) \left[\phi(X_t^{N,i}, X_t^{N,j}) - \phi(X_s^{N,i}, X_s^{N,j}) \right] \\
+ \alpha \int_s^t X_r^{N,i} \partial_1 \phi(X_r^{N,i}, X_r^{N,j}) \, dr + \alpha \int_s^t X_r^{N,j} \partial_2 \phi(X_r^{N,i}, X_r^{N,j}) \, dr \\
- \int_s^t f(X_r^{N,i})(\phi(0, X_r^{N,j}) - \phi(X_r^{N,i}, X_r^{N,j})) \, dr \\
- \int_s^t f(X_r^{N,j})(\phi(X_r^{N,i}, 0) - \phi(X_r^{N,i}, X_r^{N,j})) \, dr \\
- \frac{\sigma^2}{2} \int_s^t \frac{1}{N} \sum_{k=1}^{N} f(X_r^{N,k}) \sum_{i_1,i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \, dr
\]
The expression of $F(\mu^N)$

$$
F(\mu^N) := \frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^N,i, X_{s_1}^N,j) ... \phi_k(X_{s_k}^N,i, X_{s_k}^N,j) \left[\phi(X_t^N,i, X_t^N,j) - \phi(X_s^N,i, X_s^N,j) \right] \\
+ \alpha \int_s^t X_r^N,i \partial_1 \phi(X_r^N,i, X_r^N,j) \, dr + \alpha \int_s^t X_r^N,j \partial_2 \phi(X_r^N,i, X_r^N,j) \, dr \\
- \int_s^t f(X_r^N,i)(\phi(0, X_r^N,j) - \phi(X_r^N,i, X_r^N,j)) \, dr \\
- \int_s^t f(X_r^N,j)(\phi(X_r^N,i, 0) - \phi(X_r^N,i, X_r^N,j)) \, dr \\
- \frac{\sigma^2}{2} \int_s^t \frac{1}{N} \sum_{k=1}^{N} f(X_r^N,k) \sum_{i_1,i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^N,i, X_r^N,j) \, dr
$$
The expression of $F(\mu^N)$

$$F(\mu^N) :=$$

$$\frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^{N,i}, X_{s_1}^{N,j}) \ldots \phi_k(X_{s_k}^{N,i}, X_{s_k}^{N,j}) \left[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \right]$$

$$+ \alpha \int_{s}^{t} X_{r}^{N,i} \partial_1 \phi(X_{r}^{N,i}, X_{r}^{N,j}) \, dr + \alpha \int_{s}^{t} X_{r}^{N,j} \partial_2 \phi(X_{r}^{N,i}, X_{r}^{N,j}) \, dr$$

$$- \int_{s}^{t} f(X_{r}^{N,i})(\phi(0, X_{r}^{N,j}) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) \, dr$$

$$- \int_{s}^{t} f(X_{r}^{N,j})(\phi(X_{r}^{N,i}, 0) - \phi(X_{r}^{N,i}, X_{r}^{N,j})) \, dr$$

$$- \int_{s}^{t} \int_{\mathbb{R}} \frac{u^2}{2} \frac{1}{N} \sum_{k=1}^{N} f(X_{r}^{N,k}) \sum_{i_1, i_2=1}^{2} \partial^2_{i_1, i_2} \phi(X_{r}^{N,i}, X_{r}^{N,j}) d\nu(u) \, dr$$
The expression of $F(\mu^N)$

$$F(\mu^N) :=$$

$$\frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^{N,i}, X_{s_1}^{N,j}) \cdots \phi_k(X_{s_k}^{N,i}, X_{s_k}^{N,j}) \left[\phi(X_t^{N,i}, X_t^{N,j}) - \phi(X_s^{N,i}, X_s^{N,j}) \right]$$

$$+ \alpha \int_{s}^{t} X_r^{N,i} \partial_1 \phi(X_r^{N,i}, X_r^{N,j}) \, dr + \alpha \int_{s}^{t} X_r^{N,j} \partial_2 \phi(X_r^{N,i}, X_r^{N,j}) \, dr$$

$$- \int_{s}^{t} f(X_r^{N,i})(\phi(0, X_r^{N,j}) - \phi(X_r^{N,i}, X_r^{N,j})) \, dr$$

$$- \int_{s}^{t} f(X_r^{N,j})(\phi(X_r^{N,i}, 0) - \phi(X_r^{N,i}, X_r^{N,j})) \, dr$$

$$- \int_{s}^{t} \int_{\mathbb{R}} \frac{u^2}{2} \frac{1}{N} \sum_{k=1}^{N} f(X_r^{N,k}) \sum_{i_1, i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \, d\nu(u) \, dr$$
The expression of \(F(\mu^N) \)

\[
F(\mu^N) := \frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^{N,i}, X_{s_1}^{N,j}) \cdots \phi_k(X_{s_k}^{N,i}, X_{s_k}^{N,j}) \left[\phi(X_t^{N,i}, X_t^{N,j}) - \phi(X_s^{N,i}, X_s^{N,j}) \right] \\
+ \alpha \int_s^t X_r^{N,i} \partial_1 \phi(X_r^{N,i}, X_r^{N,j}) \, dr + \alpha \int_s^t X_r^{N,j} \partial_2 \phi(X_r^{N,i}, X_r^{N,j}) \, dr \\
- \int_s^t f(X_r^{N,i}) (\phi(0, X_r^{N,j}) - \phi(X_r^{N,i}, X_r^{N,j})) \, dr \\
- \int_s^t f(X_r^{N,j}) (\phi(X_r^{N,i}, 0) - \phi(X_r^{N,i}, X_r^{N,j})) \, dr \\
- \int_s^t \int_{\mathbb{R}} \sum_{k=1}^{N} f(X_r^{N,k}) \frac{u^2}{2N} \sum_{i_1, i_2=1}^{2} \partial^2_{i_1, i_2} \phi(X_r^{N,i}, X_r^{N,j}) \, d\nu(u) \, dr
\]
The expression of $F(\mu^N)$

\[
F(\mu^N) := \frac{1}{N^2} \sum_{i,j=1}^{N} \phi_1(X_{s_1}^{N,i}, X_{s_1}^{N,j}) \ldots \phi_k(X_{s_k}^{N,i}, X_{s_k}^{N,j}) \left[\phi(X_{t}^{N,i}, X_{t}^{N,j}) - \phi(X_{s}^{N,i}, X_{s}^{N,j}) \right]
\]

\[
+ \alpha \int_s^t X_r^{N,i} \partial_1 \phi(X_r^{N,i}, X_r^{N,j}) dr + \alpha \int_s^t X_r^{N,j} \partial_2 \phi(X_r^{N,i}, X_r^{N,j}) dr
\]

\[
- \int_s^t f(X_r^{N,i})(\phi(0, X_r^{N,j}) - \phi(X_r^{N,i}, X_r^{N,j})) dr
\]

\[
- \int_s^t f(X_r^{N,j})(\phi(X_r^{N,i}, 0) - \phi(X_r^{N,i}, X_r^{N,j})) dr
\]

\[
- \int_s^t \int_{\mathbb{R}^k}^{N} f(X_r^{N,k}) \frac{u^2}{2N} \sum_{i_1,i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) d\nu(u) dr
\]
The expression of $\phi(X^N,i, X^N,j)$

By Ito’s formula,

$$
\mathbb{E}\phi(X^N_t,i, X^N_t,j) - \phi(X^N_s,i, X^N_s,j) = \\
\mathbb{E} - \alpha \int_s^t X^N_r,i \partial_1 \phi(X^N_r,i, X^N_r,j) dr - \alpha \int_s^t X^N_r,j \partial_2 \phi(X^N_r,i, X^N_r,j) dr \\
+ \int_s^t \int_\mathbb{R} f(X^N_r,i)(\phi(0, X^N_r,j + \frac{u}{\sqrt{N}}) - \phi(X^N_r,i, X^N_r,j)) d\nu(u) dr \\
+ \int_s^t \int_\mathbb{R} f(X^N_r,j)(\phi(X^N_r,i + \frac{u}{\sqrt{N}}, 0) - \phi(X^N_r,i, X^N_r,j)) d\nu(u) dr \\
+ \int_s^t \int_\mathbb{R} \sum_{k=1}^{N} \sum_{k \neq i,j} f(X^N_r,k)(\phi(X^N_r,i + \frac{u}{\sqrt{N}}, X^N_r,j + \frac{u}{\sqrt{N}}) - \phi(X^N_r,i, X^N_r,j)) d\nu(u) dr
$$
Vanishing of $\mathbb{E} \left[F(\mu^N) \right]$

The reset jump term

$$\left| \phi(0, X^N_{r,j}) - \phi(0, X^N_{r,j} + \frac{u}{\sqrt{N}}) \right|$$
Vanishing of $\mathbb{E} \left[F(\mu^N) \right]$

The reset jump term

$$\left| \phi(0, X_r^{N,j}) - \phi(0, X_r^{N,j} + \frac{u}{\sqrt{N}}) \right| \leq C \frac{|u|}{\sqrt{N}}$$
Vanishing of $\mathbb{E} \left[F(\mu^N) \right]$

The reset jump term

$$\left| \phi(0, X_{r,j}^N) - \phi(0, X_{r,j}^N + \frac{u}{\sqrt{N}}) \right| \leq C \frac{|u|}{\sqrt{N}}$$

The small jump term

$$N \left| \phi(X_{r,i}^N + \frac{u}{\sqrt{N}}, X_{r,j}^N + \frac{u}{\sqrt{N}}) - \phi(X_{r,i}^N, X_{r,j}^N) - \frac{u^2}{2N} \sum_{i_1, i_2=1}^{2} \partial^2_{i_1, i_2} \phi(X_{r,i}^N, X_{r,j}^N) \right|$$

$$\leq CN \frac{|u|^3}{N^{1/2}} = CN^{-1/2} \leq \mathbb{E} \left[F(\mu) \right] \rightarrow_{N \rightarrow \infty} 0$$
Vanishing of $\mathbb{E} \left[F(\mu^N) \right]$

The **reset jump term**

$$\left| \phi(0, X_r^N,j) - \phi(0, X_r^N,j + \frac{u}{\sqrt{N}}) \right| \leq C \frac{|u|}{\sqrt{N}}$$

The **small jump term**

$$\mathbb{N} \left| \phi(X_r^N,i + \frac{u}{\sqrt{N}}, X_r^N,j + \frac{u}{\sqrt{N}}) - \phi(X_r^N,i, X_r^N,j) \right|$$

$$- \frac{u}{\sqrt{N}} \sum_{i_1=1}^{2} \partial_{i_1} \phi(X_r^N,i, X_r^N,j) - \frac{u^2}{2N} \sum_{i_1,i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^N,i, X_r^N,j)$$
Vanishing of $\mathbb{E} \left[F(\mu^N) \right]$

The reset jump term

$$\left| \phi(0, X_r^{N,j}) - \phi(0, X_r^{N,j} + \frac{u}{\sqrt{N}}) \right| \leq C \frac{|u|}{\sqrt{N}}$$

The small jump term

$$N \left| \phi(X_r^{N,i} + \frac{u}{\sqrt{N}}, X_r^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

$$- \frac{u}{\sqrt{N}} \sum_{i_1=1}^{2} \partial_{i_1} \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u^2}{2N} \sum_{i_1,i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^{N,i}, X_r^{N,j})$$

$$\leq CN \frac{|u|^3}{N\sqrt{N}} = CN^{-1/2} |u|^3$$
Vanishing of $\mathbb{E} \left[F(\mu^N) \right]$

The reset jump term

$$\left| \phi(0, X_r^{N,j}) - \phi(0, X_r^{N,j} + \frac{u}{\sqrt{N}}) \right| \leq C \frac{|u|}{\sqrt{N}}$$

The small jump term

$$N \left| \phi(X_r^{N,i} + \frac{u}{\sqrt{N}}, X_r^{N,j} + \frac{u}{\sqrt{N}}) - \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

$$- \frac{u}{\sqrt{N}} \sum_{i_1=1}^{2} \partial_{i_1} \phi(X_r^{N,i}, X_r^{N,j}) - \frac{u^2}{2N} \sum_{i_1,i_2=1}^{2} \partial_{i_1,i_2}^2 \phi(X_r^{N,i}, X_r^{N,j}) \right|$$

$$\leq CN \frac{|u|^3}{N\sqrt{N}} = CN^{-1/2} |u|^3$$

$$CN^{-1/2} \geq \mathbb{E} \left[F(\mu^N) \right] \xrightarrow{N \to \infty} \mathbb{E} \left[F(\mu) \right] = 0$$
Convergence of \((\mu^N)_N\)

\[
dX^N_i(t) = -\alpha X^N_i(t) \, dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u 1_{\{z \leq f(X^N_j(t))\}} \, d\pi^j(t, z, u)
\]

\[
- X^N_i(t-) \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\{z \leq f(X^N_i(t-))\}} \, d\pi^i(t, z, u)
\]

\[
d\bar{X}_t^i = -\alpha \bar{X}_t^i \, dt + \sigma \sqrt{\mu_t(f)} \, dW_t
\]

\[
- \bar{X}_t^i(t-) \int_{\mathbb{R}_+ \times \mathbb{R}} 1_{\{z \leq f(\bar{X}_t^i(t-))\}} \, d\pi^i(t, z, u)
\]
Convergence of \((\mu^N)_N\)

\[
dX_t^{N,i} = -\alpha X_t^{N,i} \, dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}^+ \times \mathbb{R}} u1\{z \leq f(X_t^{N,j})\} \, d\pi^j(t, z, u)
\]

\[
- X_t^{N,i} \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(X_t^{N,i})\} \, d\pi^i(t, z, u)
\]

\[
d\bar{X}_t^i = -\alpha \bar{X}_t^i \, dt + \sigma \sqrt{\mu_t(f)} \, dW_t
\]

\[
- \bar{X}_t^i \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(\bar{X}_t^i)\} \, d\pi^i(t, z, u)
\]

\((\mu^N)_N\) is tight on \(\mathcal{P}(D)\)
Convergence of \((\mu^N)_N\)

\[
dX^N_t, i = -\alpha X^N_t, i \, dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}^+ \times \mathbb{R}} u1\{z \leq f(X^N_t, j)\} \, d\pi^i(t, z, u) \\
- X^N_t, i \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(X^N_t, i)\} \, d\pi^i(t, z, u)
\]

\[
d\bar{X}^i_t = -\alpha \bar{X}^i_t \, dt + \sigma \sqrt{\mu_t(f)} \, dW_t \\
- \bar{X}^i_t \int_{\mathbb{R}^+ \times \mathbb{R}} 1\{z \leq f(\bar{X}^i_t)\} \, d\pi^i(t, z, u)
\]

- \((\mu^N)_N\) is tight on \(\mathcal{P}(D)\)
- let \(\mu\) be the limit of a converging subsequence
Convergence of \((\mu^N)_N\)

\[dX_{t}^{N,i} = -\alpha X_{t}^{N,i} dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}^+ \times \mathbb{R}} u^1 \{ z \leq f(X_{t}^{N,j}) \} d\pi^j(t, z, u) \]

\[- X_{t-}^{N,i} \int_{\mathbb{R}^+ \times \mathbb{R}} 1 \{ z \leq f(X_{t-}^{N,i}) \} d\pi^i(t, z, u) \]

\[d\tilde{X}_{t}^{i} = -\alpha \tilde{X}_{t}^{i} dt + \sigma \sqrt{\mu_t(f)} dW_t \]

\[- \tilde{X}_{t-}^{i} \int_{\mathbb{R}^+ \times \mathbb{R}} 1 \{ z \leq f(\tilde{X}_{t-}^{i}) \} d\pi^i(t, z, u) \]

- \((\mu^N)_N\) is tight on \(\mathcal{P}(D)\)
- let \(\mu\) be the limit of a converging subsequence
- \(\mathcal{L}(\mu)\) is the unique solution of \((\mathcal{M})\)
Convergence of \((\mu^N)_N\)

\[
dX^N_i = -\alpha X^N_i \, dt + \frac{1}{\sqrt{N}} \sum_{j \neq i} \int_{\mathbb{R}_+ \times \mathbb{R}} u \mathbf{1}_{\{z \leq f(X^N_j)\}} \, d\pi^j(t, z, u)
\]

\[-X^N_i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbf{1}_{\{z \leq f(X^N_i)\}} \, d\pi^i(t, z, u)\]

\[
d\bar{X}_i = -\alpha \bar{X}_i \, dt + \sigma \sqrt{\mu_t(f)} \, dW_t
\]

\[-\bar{X}_i \int_{\mathbb{R}_+ \times \mathbb{R}} \mathbf{1}_{\{z \leq f(\bar{X}_i)\}} \, d\pi^i(t, z, u)\]

- \((\mu^N)_N\) is tight on \(\mathcal{P}(D)\)
- let \(\mu\) be the limit of a converging subsequence
- \(\mathcal{L}(\mu)\) is the unique solution of \((\mathcal{M})\)
- \(\mu = \mathcal{L}(\bar{X}^1|W)\) is the only limit of \((\mu^N)_N\)
Bibliography (1)

- **Chevallier, Duarte, Löcherbach, Ost (2019).** Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications.

- **Andreis, Dai Pra, Fischer (2018).** McKean-Vlasov limit for interacting systems with simultaneous jumps. Stochastic analysis and applications.
E., Löcherbach, Loukianova (2020). Conditional propagation of chaos for mean field systems of interacting neurons. Accepted at EJP.

Aldous (1983). Exchangeability and related topics. Ecoles d’Été de Probabilités de Saint-Flour : XIII.

Thank you for your attention!

Questions?