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Abstract : The aim of these lectures is to familiarise the reader with these
basic facts, stated here for Brownian motion and semimartingales taking
values in flat space R", so that the same reader may become ready for an
exposure of the variants of these facts for processes valued in manifolds.




Contents

1 Lecture A 3
1.1 Martingales and Stopping times . . . . . . . .. ... ... .. 3
1.2 A fundamental example of a continuous martingale : Brownian

motion . . . . . .. .. 4
1.3 The predictable bracket between two martingales . . . . . . . 4
1.4 Stochastic integrals; Ité’s formula . . . . . .. ... ... ... 5
1.5 Lévy’s characterization of Brownian motion . . . . . ... .. 5
1.6 The Dambis / Dubins-Schwarz (1965) and Knight (1970) rep-
resentation theorems . . . . . .. ... ... oL 6
1.6.1 e 6
1.6.2 e 6
1.6.3 . . e 7
1.6.4 . . e 7
1.7 Stratonovich versus It6’s integrals . . . . . .. .. .. ... .. 8

2 Lecture B 10
2.1 Stochastic Differential Equations (: SDEs) . . ... ... ... 10
2.2 Some examples : linear SDE’s, Bessel processes,... . . . . . .. 11
2.3 Their Markov property . . . . . . . . ... 12
2.4 Another approach : the martingale problem . . .. . ... .. 12
2.5 Weak and Strong solutions . . . . . ... ... ... ... 13

3 Lecture C 13
3.1 The Martingale representation theorem for

Brownian motion . . . . . .. .. ... Lo L. 13
3.2 Girsanov’s theorem . . . . . . .. ... .o 15
3.3 The Clark-Ocone formula; examples . . . . . . ... .. .. .. 17
3.4 Bismut-type formulae; a little Malliavin calculus 7 . . . . . . . 18




1 Lecture A

1.1 Martingales and Stopping times

It is an astonishing fact that many complex notions, results, discussions in-
volving (continuous-time, say) stochastic processes, may be tackled in terms
of the simple notion of a ((F;), P) martingale. A ((F), P) adapted, and
integrable process (M;,t > 0) is a ((F;), P) martingale if :

Vs<t, E[M,|Fs) = M,

This notion, which is a mathematical manner of presenting a fair game, is
intimately related to (F;) stopping times, i.e :

random variables T': (Q,F) — [0,00] such that : V¢, (T <t)€ F

Theorem 1.1. (Doob’s optional stopping theorem)

1) Let (M) be (F;) adapted and integrable. Then, it is a ((F;), P) martingale
iff -V (F) stopping time T, which only takes a finite number of values,
E[Mr) = E[M,).

2) Assume that (M,;),t > 0) is a uniformly integrable martingale. Then, for
every pair (S,T) of (F;) stopping times such that : S < T, one has :

E[Mr|Fs] = Ms

e In a good Markovian setting, if f : E — R belongs to the domain D(L)
of the infinitesimal generator £ of the E-valued Markovian process (X}),
then one has :

PG = 1@+ [ P(L)(@)ds

where (P;) denotes the semigroup of (X;).
This identity is in fact equivalent to :

ot j(x) -1 - [ LF(X.)ds

is a (P, (F;)) martingale.

e Kunita (1969) took advantage of this equivalence to define the extended
generator L, as an operator defined on bounded functions f such that

there exists f with :

t
£00) = 1) - | FCt)as
0
is a (Py, (F;)) martingale; Kunita’s definition of L. is then :
L(f)=f




1.2 A fundamental example of a continuous martingale :
Brownian motion

Recall the central limit theorem

1 (law)
%(Xl + X2 + ... +Xn) n——)>oo N(O,U2) )
where X; + X, + ... + X,, are iid, centered variables with second moment
0? = E(X?) < o0, and N(0,0?) denotes a centered Gaussian variable with
variance o?.
This central result admits a process extension (: Donsker’s theorem) :

1 law
(%S[m],t > 0> ) N(oBi,t > 0) (1.1)

where S, = X1 + ... + Xj, and [z] =integer part of .

It is easily shown from (1.1) that the process (Bt > 0) on the RHS is
Gaussian, centered, with independent increments; moreover, (B;) and (B —t)
are also easily shown to be martingales (with respect to (B, = 0{Bs, s < t},
t > 0)).

By Kolmogorov’s continuity criterion, since (equally easily!) :

E[(B, — By)"] = 30"(t — )*,

the process (B;,t > 0) admits a continuous version.

We may now define a standard real-valued Brownian motion (B, t > 0) as
being a centered, continuous, Gaussian process with independent increments,
such that By = 0 and E(B}?) = t. This process plays a role of prototype in
many questions, i.e :

e it is the prototype of a continuous (local) martingale; see 1.6, below;

e it is the prototype of a continuous Lévy process, that is an homo-
geneous process with independent increments, and continuous paths,
since all such processes may be written as : 0By + ut, t > 0, for two
constants o and p.

1.3 The predictable bracket between two martingales

Theorem 1.2.

If (My) and (N;) are two locally square integrable martingales (: this condition
is automatically fulfilled if M and N are continuous), then there exists a
unique predictable process with bounded variation, written (< M, N >;,t > 0)
such that : (M;N;— < M,N >, t > 0) is a local martingale.
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Comments

e By uniqueness, the application : (M, N) —< M, N > is bilinear, sym-
metric, and positive.

e Furthermore, there is the Kunita-Watanabe inequality :

1 1
t t 2 t 3
/|H8K5||d<M,N>s|§(/ H§d<M>s> (/ de<N>s)
0 0 0

where, for simplicity, we denote (< M >;) for < M, M >,.

In the Markovian theory, for a good Markov process (X;)i>o (which means,
in particular here, that every locally square integrable martingale (M;,t > 0)
- with respect to any of the (P,)’s - satisfies : d < M >;= mudt, for some
predictable process mt > 0) the brackets : < C¥,C9 >, f, g € D(L), satisfy :
< Cf,C9 >= fo 9)(X;)ds where T' : D(L) x D(L) — (.) denotes the

"opérateur carré du champ , whose existence is due to Kunita, and which
was rediscovered by Roth (1976); for a good Markov process (X;), D(L) is

an algebra, and I'(f, g) = L(fg) — fL(g) — 9L(f)-

1.4 Stochastic integrals; It6’s formula

[td’s formula is the fundamental theorem of stochastic calculus, just as one
speaks of the fundamental theorem of ordinary integral/differential calculus.

Theorem 1.3.
Let (X',...,X™) be a n-dimensional continuous (F;) semimartingale. Then,
for every f € C3(R"), we have :

?

F(X) = f(X0)+/ VF(X,).dX, + = /Z X,)d < X' X7 >,

o t)rJ

Comments

It is the second order term which is the novelty, with respect to ordinary
calculus. However, the geometric interpretation of this second term shall be
discussed in the different courses.

1.5 Lévy’s characterization of Brownian motion

Lévy’s theorem (Theorem 1.5 below) is extremely powerful as it allows to
recognize that a given process is a Brownian motion from just one (or two !)
martingale properties.



Theorem 1.4.
The only continuous local martingale (My);>o such that (MZ —t,t > 0) is
also a local martingale is Brownian motion.

Proof
Assume that (M;,t > 0) satisfies these properties; then, by It6’s formula, for
any simple function f : Ry — R, we get :

exp (z /Otf(u)dMu + %/Ot f2(u)du> , t>0,

is a local martingale; but, since it is bounded, it is a true martingale, and we

T e (e[ s~ (<L [ )

which shows at once that the distribution of the increments
(Mtl, Mtz — Mtl, ceny Mtn — Mtn—l) is that Of (Bt17Bt2 — Bt17 vy Bt" — Btn—1)7
hence the result.

1.6 The Dambis / Dubins-Schwarz (1965) and Knight
(1970) representation theorems

1.6.1 The Dambis / Dubins-Schwarz theorem gives an important represen-
tation of a generic continuous local (F;) martingale (M;);>o, as a time change
of a Bronwian motion; precisely :

Mt :/B<M>t)t Z 0

where (83,,u > 0) is a (F,,) Brownian motion [r, = inf{t :< M >;> u]. The

details are given in the paragraph 1.6.2.

1.6.2 To any continuous local martingale (M;);>0, one may associate its
quadratic variation process (< M >t > 0) which may be defined by

<M>=P-—1lim > (M,

) — Mt(n))2 where sup(tl(i)l —tg")) 0
1 i N
tin)<...<t§,")§t i

(n
i+ n—oo

It is not difficult to show that
M2~ <M >;, t>0, (1.2)
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is a local martingale, and since (< M >;) is increasing and continuous,
the property (1.2) characterizes (< M >;). Note that this discussion is
closely related to Theorem 1.2, where in greater generality, the existence and
uniqueness of (< M >;) is asserted.

Theorem 1.5. (Dambis / Dubins-Schwarz (1965))
If (M;,t > 0) is a continuous local (F;) martingale such that < M >,,= o0,
then the process :

Bu=M,,, Ty = Inf{t :< M >;> u}
is a (F,) Brownian motion, and M may be represented as :
Mt=ﬂ<M>“ t>0.

Proof of the theorem (Sketch) :

By time-changing, one finds that both (3,) and (82 — u) are two continuous
(F..) martingales (to be carefully justified). It then suffices to use Lévy’s
theorem to conclude; then, undo the time change...

1.6.3 This theorem extends partially to any k-tuple (M, ..., M*) of contin-
uous (F;) local martingales, such that : < M* M’ >,= 0, for 7 # j.
Such a k-tuple may be represented as :

M= fppis,, t20,i=1,2,..k

with k independent Brownian motions (f3;)1<i<k. This theorem is due to F.
Knight (1970); a difference with the Dubins-Schwarz theorem is that, here,
we have lost "the notion of time"...

1.6.4 However, there is a particular case where time is not lost, i.e : when
the (< M® >;) are equal. Call (A;) this common process, and :

. =inf{t: A; >u}, u>0.

Then, (8!)u>0:i=12.. 4 is a R* - Brownian motion - with respect to (F,).
This very interesting case occurs in particular for £k = 2, with conformal
martingales (Z;, = X; +1Y;, ¢ > 0) denoted here in a complex manner. Then,
a conformal martingale (Z;,t > 0) may be defined as a C-valued continuous
local martingale such that (Z2,¢ > 0) is also a C-martingale, this is equivalent
to the "Cauchy-Riemann equations" : < X >;=<Y >;; < X, Y >;=0. The
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reason for this name is that, if (Z;,t > 0) denotes now a C-valued Brownian
motion, and f : C — C is holomorphic, then (f(Z;),t > 0) is a conformal
martingale.

The C-extension of the Dubins-Schwarz-Knight theorem may then be written
as :

FZ) =7 L t>0, (1.3)
/0 | (Z0)Pdu

where f’ is the C-derivative of f, and 7 denotes another C-valued Brownian
motion. This is an extremely powerful result due to P. Lévy (1943), which
expresses the conformal invariance of C-valued Brownian motion.

It is easily shown, as a consequence of (1.3), using the exponential function
that, if Zy = a, then (Z;,t > 0) shall never visit b # a (of course, almost
surely). As a consequence, (1.3) may be extended to any meromorphic from
C to itself, when P(Z, € 8) = 0 with S the set of singular points of f.

References :

e B. Davis :
Brownian Motion and Analytic Functions.
Ann. Prob. (1979).

e R. Durrett :
Brownian Motion and Martingales in Analysis.
Wadsworth (1984).

1.7 Stratonovich versus It6’s integrals

Let H and X be two continuous semimartingales in the same filtration. The
Stratonovich integral of H with respect to X may be defined, and denoted
as :

¢ t
1
/HsodXs:/ Hsts+—2—<H,X > (1.4)
0 0

t
where on the RHS, ( / H,dX,, t > 0} denotes the It integral.

0
We now discuss both the interest, and the intrinsic character of this definition :

a) Assume that (X;) is a continuous semimartingale, and f : R — R is a
C? function.
Then, It6’s formula :

t t
F00 = 10+ [ FXaxe+ g [ rxd< x>,
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may be written in the simpler form :

FX) = F(Xo) /f ) o dX,

as a Stratonovich integral.
At this point, the reader may think of this as an adhoc definition, but
in fact there is a nice geometric justification, which we now discuss :

b) The sequence of integrals :
1
Z/ (X + M X1 — X)) dh( X1 — Xe,)
—Jo

converges as n — 00, towards :

/f )o dX,

as soon as f is in C!; one needs to be more careful with integrals such
as :

1
Z/ f(Xti+S(ti+1—ti))d,u’(s)(Xti+1 - Xti) )
n 0
as 1n — OQ.

The previous discussion extends easily to (X;,t > 0) an R%-valued continuous
semimartingale, and yields the following extension of [t&’s formula.

Proposition 1.6.

Let m = Zle filz1, ..., zg)dz; be a closed differential form of C' class on an
open set U of R, and let (X;) be a continuous semimartingale taking values
i U. Then :

H(X,)dXE +
/X(o t)(w) / @Z f

where / 7 denotes the integral of 7, along the continuous path (Xs(w),
X

(0,5)(@)
s > 0), for 0 < s < t. Recall that, ify: [0,1] — U is a continuous path, then

Z / 2 (X.)d < XF, X7 > (1.5)

1_31

/7r is defined as 7(y(1)) — #(y(0)), where & denotes a primitive of m along
v ,
a chain of balls covering the graph of .




Sketch of proof.
Formula (1.5) follows from the approximation :

d

1 . .
/ m=a.slim) / > F(Xy + h(Xy, — Xe))dR(XE,, — XT)
X(0,5)(w) ™ Y0

n—oo -
=1

where (7,,) is a sequence of subdivisions of [0, ], whose meshes tend to 0.

In particular, if (Z,,u < Ty) denotes complex Brownian motion considered
before its exit time from the open domain U, and if f : U — C is an
holomorphic function, then :

t
/ f(2)dz = / f(Zs)dzZs , t < Ty, a.s.
Z(o,1)(w) 0
1
Example 1.7.1. U=C~{0}; f(») = -
This allows to give a representation of the continuous determination of the
argument of (Z,,u > 0) around 0 as :

0 0 — Im /]tdZS _/thdYs—stXs
T o %) Jo X2HY?Z
References :

e M. Yor :
Sur quelques approximations d’intégrales stochastiques.
Sém. Prob. XI., Springer (1977).

e Ph. Protter :
Stochastic Integration and Differential Equations.
Second edition, Springer (2004).

2 Lecture B

2.1 Stochastic Differential Equations (: SDEs)

Immediately after he constructed stochastic integrals with respect to Brow-
nian motion, It used his definition to consider SDE’s; i.e solutions of :

X, =2+ /0  o(X.)dB, + /0 b(X.)ds (2.1)

where : 0 : R" —» My, b: R* - R".

Theorem 2.1.
Assume that ¢ and b are Lipschitz. Then, the equation (2.1) admits only one
solution, which may be obtained with the help of Picard’s iteration procedure.
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2.2 Some examples : linear SDE’s, Bessel processes,...

Example 2.2.1. (Linear SDE’s)
For simplicity, we take here n = 1, and we may consider :

¢
Xt=:v+Bt+)\/ ds X,
0

the SDE satisfied by the Ornstein-Uhlenbeck process with parameter . It
solves explicitly as :
¢
Xt :e/\t(x_l_/ eAsst),
0

with the help of var. of constant.
In fact, one may solve quite generally the following linear SDE, where both
H and Z are continuous semimartingales :

t
Xt :Ht+/ Xsts.
0
Then, one obtains :
t
X, =E&(2), <H0 -l-/ E(Z);(dH,—d < H,Z >S))
0

where !
g(Z)t = exp{Zt — Zy — 5 < Z >t}

Example 2.2.2. (Bessel processes)
Consider first Ry = |By|, the Euclidean norm of n-dimensional Brownian
motion (n > 1). Then, it is not difficult to justify, via It6’s formula, that
(Ry) satisfies :

n—1 [tds

| & (B):1-dimB.M) (22)

Ry = Ro+ By +

Of course, the singular drift creates some difficulty in the discussion of this
SDE, but if one considers : Z; = RZ, then (2.2) transforms in :

t
Zt=Z0+2/ \/stﬂs—i-n.t; tho,
0

an equation which is shown to enjoy path uniqueness.

11



2.3 Their Markov property

Denote by (P,)scrn the family of the laws - considered on Q¢qn = C(Ry,R")
- of the solutions of equation (2.1). These are well-defined (e.g : with the
help of Picard’s iteration procedure). These laws are Markovian, i.e :

E,[F o6y F] = Ex,(F)

The infinitesimal generator, of (X;), under these laws, may easily be given
in terms of o and b.

2.4 Another approach : the martingale problem

This approach may be explained as follows :

(i) We saw, in Theorem 1.5, the simple characterization of Brownian mo-
tion in terms of just two martingale properties;

(ii) it is a natural question to ask whether there may exist a similar char-
acterization for "diffusions", i.e : Markov processes (taking values in
R™, say), with continuous paths.

In fact, such a characterization exists, and one may go back and forth
between the formulation of a martingale problem, and a presentation
as a solution of Ité’s SDE (2.1); more precisely :

- if (X;) solves the SDE (2.1), then, for every f € C*R,

14

F(X) — F(Xo) — / dsLf(X.)

is a local martingale, where :

1, \df df
Lf(z) = 59 (w)@ + b(:c)% :
Any probability P on §.,, which satisfies this property, with respect
to (X;) the canonical process, and its canonical filtration will be said
to be a solution to the martingale problem M,z .

- Conversely, if P is a solution to the martingale problem M2, then,
by taking f(z) = z, and f(z) = z?, and applying the It6-Lévy charac-
terization of Brownian motion, one can show that under P, (X3) is the
solution of an It6 SDE with diffusion coefficient o, and drift coefficient
b.

12



- To summarize : A priori, the SDE presentation of a diffusion may not

be given, but one may always (at least : often!) present the diffusion
in this form...
In any case, if b and/or o are not regular, the "real work" still needs to
be done, i.e is there uniqueness in law for M2, 7 The Itd presentation
may help as shown by Stroock-Varadhan : Multidimensional Diffusions,
Springer (1979). P. Priouret : Ecole d’Eté de St-Flour (1974) gives a
detailed discussion of these points.

2.5 Weak and Strong solutions

If (X;) solves (2.1), then it is called a strong solution if (X;) is adapted to
the natural filtration of B. If not, (X;) is called a weak solution.

Theorem 2.2. (Watanabe-Yamada [-])
Pathwise uniqueness implies that the solution is strong.

Another uniqueness is that of uniqueness in law, i.e : on a given probability
space, there may exist several pathwise solutions to equation (2.1), but their
distributions are equal. The classical case which is discussed in every text-
o(z) = sgn(z)

b(z) =0.

Indeed, in that case (with z = 0), if (X;) is a solution, then so is (—X;). But,
both of them are Brownian motions, thanks to Lévy’s theorem 1.5.

book is that of :

3 Lecture C

3.1 The Martingale representation theorem for
Brownian motion

is the following

Theorem 3.1.

If (My,t > 0) is a local martingale with respect to the filtration (B, t > 0)
generated by an n-dimensional Brownian motion (By,t > 0), it may be rep-
resented as :

t
M, =c +/ m,.dB;, (3.1)

0
where (ms)s>o is a (Bs) predictable process, taking values in R", and z.y

denotes the Euclidean scalar product between z and y. For (8.1) to make
sense, it is necessary that m satisfies : f(f |ms|2ds < 0 a.s, for everyt.

13




Proof

(1)

[Warm-up| Again, similarly to the proof of Theorem 1.5, we first prove
the result for exponential martingales of the form :

el = o ([ 0085 [ Fe)as)

for f € L2 (R4;R™).

Loc
By 1t6’s formula, we get :

t
&l = 1+/ &S f(s).dB,;
0

thus, in case
M, =&/, weget: m, =& f(t)

We now show that, if X € L%(B;R), then there exists a predictable
process (z,), taking values in R™, such that :

X = B(X) + / 2,.dB,,
0]

E [/ ]$s|2ds] <00
0

[0 ¢}
(this ensures that : E[X?) = (E[X])*+E {/ |m3|2ds] ). Consequently,
0
in order to prove the theorem, it suffices to show that a total family of

variables in L?(By) may be represented in the preceding form.
Such a total family may be obtained from :

£l = exp ( [ r0am -5 [ |f<s>|2ds) ,

where we now assume f € L2(R,R™).

The stochastic integral representation of this variable is obtained from
i), since : & = E[EL|B;]. The fact that A = {€L; f € L*(Ry,R")} is
total in L?(By) follows from :

if Y € L?(B,,) satisfies : E[YE] =0, VE € A, then :

with :

E [Yexp (/000 f(s).stH =0, Vf e L*(Ry)

but this implies that Y = 0, hence A is total.

14




Comments on Theorem 3.1.
(c.1) Wiener’s chaotic decomposition of L%(By,), as :

L*(B.) =P,
k=0

where

* t te—1
Ck = {/ dBtl-/ dBtz/ dBtkfk(th'"ytk);fk c Lz(Ak;Rn)}
0 0 0

with
Ak = {(tl, ...,tk);tl >ty > . > tk}
may also be obtained easily for the variables {££ }, and then extended to all
variables X € L?(By,).
The chaos decomposition of £Z is :

e 145 (Tan. [Tap... [*as,
L=1v / dB, / dB,, / By, £ (t1) £ (t2) - £ (1)

(c.2) Another proof, due to C. Dellacherie, of the martingale representa-
tion theorem for Brownian motion consists in remarking that, as a con-
sequence of Theorem 5, W, the distribution of Brownian motion, alias :
Wiener’s measure is an extremal point in the convex set M of all probabili-
ties on C(Ry,R™) which make the canonical process (X;);>o @ martingale.
Then, one can show that : ext(M) consists precisely of the probabilities P
with respect to which (X;):>o enjoys the martingale representation property.

3.2 Girsanov’s theorem

This theorem underwent a series of "mutations", which seem to have stabi-
lized in the following form.

Theorem 3.2.
Let P and @Q two locally equivalent probability measures on {Q, F, (F:)}; de-

note :
dQ
ﬁ Fi
Then, if (M;) is a (P, F;) local martingale, it is a (Q,F:) semi-martingale,
which may be written as :

1
=Dy =exp(Lt— 5 <L >t)

o~ t ¥ " —
Mt:Mt+/ _—”‘ﬁ;;’bh = M+ < M,L >,
0 &
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where (Mt)tzo is (@, (Ft)) local martingale.

Corollary 3.2.1. .
If (My)i>0 is a ((F1), P) Brownian motion, then (My)i>o is a ((Ft), Q) Brow-
nian motion.

We now give a number of examples of applications.

Example 3.2.1.

For u € R, denoted by W® the law of Bt(“) = B; + pt, Brownian motion
with drift 1, on Qean, the canonical space C(Ry,R), where Xi(w) = w(t), and
Fi=o0{X,,s < t}.

Then, there is the Cameron-Martin relationship :

2t
W = exp (uXt - “7) Wi, (3.2)

This may be seen immediately from Theorem 2.2, which tmplies that, under
W®) | one gets : _
Xt = Xt + ,Ll,t,

with (X;) a ((F), W®) Brownian motion.
Example 3.2.2.
There is an absolute continuity relationship between the laws (Pr(” )) of Bessel
processes with "index" u, starting from r > 0, as p varies in Ry, in fact, a
very interesting result due to J. Lamperti (1972) asserts that :
exp(Bt(“)) — R(#)t :
/ ds exp(2BW)
0

where (Rl(,“ ) ,u > 0) denotes a Bessel process with index p, or "dimension”

0=2(1+p).
Then, the following relationship is easily deduced from (8.2) by using time-

changes :
1 2 pu
w _ (B b ds\ 0
B, = (7) exp( 2 /0 @) Frin.
This relationship may be extended conveniently for any pair u, v of indexes...

However, if u > 0, and v < 0, there is only an absolute continuity relation-

1
ship, the most famous of which being : p = +§, v=-—g then :

() Rounr;
Pr|:€u = ( r 0) 'WTIRu

16




Example 3.2.3. BM and O.U processes
The Ornstein- Uhlenbeck process (abbreviated as O.U) with parameter A may
be defined as the solution to :

t
Ut:u+Bt—|—)\/ Usds
0

Its distribution PV satisfies :

- t )\2 t
P = exp{)\/ X dX, — oY des}.Wum
0

ulr,
t 0

Ary2 2 N
(f) = exp E(Xt_u —t)——2— i Xyds | Wy,

This formula extends easily to the n-dimensional versions (of BM and O.U
processes), and leads to formulae such as :

)\2 1
Ew (exp{—;/ dsst}|Xi:a>
0

_ (SinAh A) exp (——C;j((coth)\) —1)) ,

which is closely related to Lévy’s stochastic area formula (for planar BM).

|-

3.3 The Clark-Ocone formula; examples

The Clark-Ocone formula gives an expression of the Itd integrand ¢, of a
differentiable functional F'(B,,u < 1) on Wiener space, in the direction of
the Cameron-Martin space

¢ 1
H= {h: [0,1] — R; A(t) =/ ds h'(s) with / ds(h'(s))* < oo}
0 o
This formula is :
1
F(B)= EP(B)] + | v.dB.
0
with :
s = E[F'(B;]s,1])|B,],
where F”(B;dt) is the signed measure (assumed to exist) such that :
1 1 1
lim (F(B + h) ~ F(B)) = / F/(B; d)h(t) = / dsK(s)F'(B;s, 1)),
E—00 0 0

by integration by parts.
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Examples; Exercises
In practice, given F' € L%(B;), one may compute in many instances :

E[F|By] = Ep,[F(w/t/.)],
and under some hypothesis on F', one may justify the formula :

F=BIF+ [ 5 (BFG/s/ )b,

Thus, as an example F' = f(B;), for any bounded, Borel f.

3.4 Bismut-type formulae; a little Malliavin calculus ?

This will be developed orally; among the many references to Malliavin cal-
culus, the book by D. Nualart (Springer; 1995) is probably one of the most
accessible.
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