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Abstract. We present a succinct discussion of a number of topics in Proba-

bility Theory which have been of interest in recent years.

1. The set of Martingale Laws

Consider, on the Skorokhod space of càdlàg functions, all probabilities P which
make the canonical process of coordinates a martingale. Call M this set. Clearly,
it is a convex set, and it may be of interest to characterize its extremal points.
An application of Hahn-Banach theorem (to the pair H1-BMO, and the fact that
a BMO martingale is locally bounded) allows to show that P in M is extremal
if and only if any martingale under P may be written as the sum of a constant
and of a stochastic integral with respect to the canonical (martingale) process. A
particularly illustrative example is that of P = W, Wiener measure. Indeed, on
one hand, from Lévy’s martingale characterization of Brownian motion, it is easily
shown that W is extremal in M. On the other hand, it is a theorem (due to Itô)
that all Brownian martingales may be written as the sum of a constant and of a
stochastic integral with respect to Brownian Motion. That these two properties
hold for W is not a mere coincidence, but is explained by the general statement
above. [15]

To our knowledge, the first author who tried to connect the two properties,
namely: extremality of P, and martingale representation property under P is C.
Dellacherie [6, 7]. [7] corrects [6] partially, but the local boundedness property
which seems necessary for a correct proof is only found in [15].

The use of the H1-BMO duality in this topic is reminiscent to that of the L1-L∞

duality in the characterization of extremal probabilities, solutions of a (generalized)
moment problem. In fact, it is a theorem, due to Douglas and Naimark (indepen-
dently) that the extremal points P of such a moment problem are those for which
the vector space generated by the functions defining the problem and the constant
function 1 is dense in L1(P). Yor [27] explains how to relate the 2 frameworks and
extremality results.

2. Strong and Weak Brownian Filtrations

We shall say that a filtration Ft is strongly Brownian if it is the natural filtration
of a Brownian Motion. On the other hand, we shall say Ft is weakly Brownian if
there exists a Brownian Motion B for this filtration such that all martingales for
this filtration may be written as the sum of a constant and a stochastic integral with
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respect to B (but the integrand is predictable with respect to Ft). Any strongly
Brownian filtration is weakly Brownian (Itô’s theorem recalled in Section 1). It is
natural to ask whether any weakly Brownian filtration is strongly Brownian. The
answer turns out to be negative:

• it is easily shown that on the canonical space of continuous functions, en-
dowed with any probability Q equivalent to Wiener measure W, the canon-
ical filtration is weakly Brownian; however, it has been shown by Dubins-
Feldman-Smorodinsky-Tsirelson [8] that there are infinitely many Q’s such
that Ft is not strongly brownian under Q;

• the filtration of Walsh’s Brownian Motion with N rays, for N ≥ 3, is weakly
but not strongly Brownian, another result due to Tsirelson [26]. A poste-
riori, a clear explanation of this result emerged as it was shown that M.
Barlow’s conjecture holds: for g, the end of a predictable set in a strong
Brownian filtration, the progressive σ-field up to g can only differ from the
predictable one by, at most the addition of a set. This is clearly not the
case for Walsh’s Brownian motion with N rays, N ≥ 3, and g the last zero
of this process before time 1;

• there exist time changes of the canonical Brownian filtration such that the
time changed filtration is weakly, but not strongly Brownian, a result due
to M. Émery and W. Schachermayer [9].

3. Weak Brownian motions of any given order

Although the adjective weak is used again here, this topic has nothing to do
with topic in Section 2. It was suggested by a question of Stoyanov in his book of
counter examples [25]: does there exist, for a given integer k, a process which has
the same k-dimensional marginals as Brownian Motion? The answer is yes, as was
proven by H. Föllmer, C.-T. Wu, and M. Yor [12], by constructing probabilities Q
equivalent to W, the Wiener measure, such that the k-dimensional marginals of the
canonical process under Q are those under W.

4. Martingales with 1-dimensional Brownian marginals

Note that this topic differs from Section 3, where the processes constructed there
are not martingales, but, in general, semimartingales. For constructions of martin-
gales, see [1], [4], [13], [18]. There are at least two versions of these constructions,
one where it is required that the martingale is continuous, e.g. [1]; the other where
discontinuity is allowed, e.g. [18].

5. Explicit Skorokhod embedding

The problem is now well known: given a centered probability µ on R, find a
stopping time T of Brownian motion B, such that BT is µ distributed and Bt∧T is
a uniformly integrable martingale. Although J. Ob lój found 21 different solutions
scattered in the literature [20], few of them are explicit, as in general, the authors
proceed by finding solutions for simple µ’s then pass to the limit.

Azéma -Yor found that if Tµ := inf{t : St ≥ Hµ(Bt)}, where St = sup
s≤t

Bs, and

the Hardy-Littlewood function Hµ(x) is defined as:
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Hµ(x) =
1

µ([x,∞))

∫
[x,∞)

tdµ(t),

then Tµ solves Skorokhod problem for µ [3]. To prove this result, Azéma-Yor [3]
use first-order stochastic calculus, whereas L. Rogers [22] uses excursion theory.
Madan-Yor [18] remarked that for a family µt such that the corresponding Hardy-
Littlewood family is pointwise increasing in t, the Brownian motion B taken at
those stopping times is a martingale.

6. Peacocks and associated martingales

We say that a process Xt is a peacock (:PCOC) if, when composed with any
convex function, the expectation of the obtained process is increasing in t. It is a
consequence of Jensen’s inequality that a martingale is a peacock. Conversely, it is
a deep theorem due to Kellerer (1972) [17] that a peacock is a process which has
the same one dimensional marginals as a martingale. Moreover, this martingale
may be chosen Markovian. Thus, at least, two questions arise:

(a) How to create peacocks in a systematic way? One answer is: the arithmetic
average of a martingale is always a peacock. The original example of this
seems to be due to Carr -Ewald -Xiao [5] who took for a martingale the
geometric Brownian motion;

(b) Given a peacock, how to associate to it a martingale with the same marginals?
So far, there does not seem to exist a general answer. But, in their mono-
graph, Hirsch, Profeta, Roynette, and Yor exhibit a number of general cases
where some construction may be done [14].

7. (Brownian) penalisations

Consider W, the Wiener measure and Ht, positive, a family of adapted probabil-
ity densities (with respect to the canonical filtration). This allows to create a family
Wt of probabilities on Ft. The penalization problem is to find whether, as t→∞,
Wt when restricted to Fs, for fixed s, converges weakly, and if so to describe the
limit law. Two monographs have been devoted to this problem: Roynette-Yor [23],
and Najnudel-Roynette -Yor [19], the first is a collection of examples, the second
aims at finding general convergence criterions.

8. Martingales with the Wiener chaos decomposition

It is a well-known result, due to Wiener, that every L2-martingale for the Brown-
ian filtration may be written as the sum of a series of multiple integrals with respect
to Brownian motion, with the series of squares of (deterministic) integrands, inte-
grated with respect to Lebesgue measure on their corresponding sets of definitions,
converging. A similar result is true for the martingale of the compensated Poisson
Process. For a long time, it was thought that these were the only two martingales
with Wiener chaos decomposition. But, M. Émery [10] showed that Azéma’s mar-
tingale, i.e.: the projection of Brownian motion on the filtration of Brownian signs
up to time t, also satisfies this property. See also [2] for another proof. M. Émery
[10] considered more generally some martingales solutions of so-called structure
equations, some of which also enjoy the Wiener chaos decomposition; he also wrote
a synthesis [11].
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9. Asymptotics of planar Brownian windings

A number of limit theorems (in law) for additive functionals of 1- or 2-dimensional
Brownian motion have been obtained throughout the years. This is in particular
the case for the winding number of planar Brownian motion up to time t, which,
when multiplied by 2

log(t) converges in law towards a standard Cauchy variable

[24]. This result admits a number of multivariate extensions, in particular: with
the same normalization 2

log(t) ,the vector of n Brownian winding numbers around

different points converges in law towards a random vector with (linked) Cauchy
marginals [21]. The dependence between the different Cauchy marginals may be
explained from the Kallianpur-Robbins [16] asymptotic theorem: normalized by

1
log(t) , the time spent in an integrable Borel set by 2-dimensional Brownian motion

up to time t is asymptotically exponentially distributed.

10. How to modify the Burkholder-Davis-Gundy inequalities
up to any time?

A version of the BDG inequalities is: for any positive p, the supremum of the
absolute value of Brownian motion up to a stopping time T has Lp moment which
is equivalent to that of

√
T . How could one modify this result when T is replaced

by any random time L? A technique consists in making L a stopping time and
to consider the semimartingale decomposition of Brownian motion stopped at L.
Then, an extension of Fefferman’s inequality allows to obtain the desired variants.
For details, see Yor [28].
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