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chercheuse. Un merci tout particulier aussi au directeur de l’institut de d’infor-
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Chapitre 1

Introduction

1.1 Biostatistician ?

I define myself as a biostatistician with focus on both methodological statisti-
cal research and biomedical applications. As such, I am trying to address some
problems encountered in biometrical practice from a statistical point of view.
This includes the development of new statistical methods to address unsolved or
partially unsolved problems, but also the critical assessment and the comparison
of existing methods or practices. My main research area being the statistical
analysis of high-dimensional “omics” data, I am working at the intersubsection
between statistics, computational medicine and bioinformatics.

For the sake of simplicity and consistency, I always denote researchers like me as
“statisticians” and the cooperation partners – who produce the data and are in-
terested in the results on their data set – as “biomedical scientists”. Biomedical
scientists are interested in the results of the statistical methods, while statis-
ticians are interested in the methods themselves. Note that many (academic)
researchers with statistical background, for instance statistical consultants, are
not interested in the methods themselves but rather in the results they produce
on data from the biomedical cooperation partner or consulting customer. I take
this point of view in some of my application projects. This part of my activities,
however, is not be described in this thesis.
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1.2 The content of this synthesis

The assessment of prediction models and the related problem of over-optimism
in applied statistical research are among the subjects I am interested in. Pre-
diction models are a key concept in biometrical practice. An important part of
medical research is devoted to prediction problems in a broad sense : improved
diagnostic, assessment of personalized disease risk, prediction of the response to
a therapy, to cite only a few examples. Prediction problems are supervised pro-
blems. From a statistical point of view, supervised problems have the advantage
that they allow the statistical analyses to be objectively assessed in real data ana-
lysis by confronting the obtained predictions with the truth. This holds both for
methodological research (development of new prediction methods) and for appli-
cations (development of concrete prediction models for biomedical cooperation
partners). An issue that is relevant to most fields of applied statistical research
in general and prediction models in particular is over-optimism of the assessment
of performance. In the first section of this manuscript, I give an overview of pre-
diction problems with high-dimensional omics data and the assessment of their
performance with a particular emphasis on over-optimism issues.

Another problem related to prediction models is the assessment of the relative
importance of the predictors included in these models. This problem can also
be seen as supervised, because the importance of predictors can be measured
in terms of prediction accuracy. However, it is not as easy as it might seem at
first view to define the “importance” of a predictor. Plenty of definitions are
conceivable, making the development and assessment of importance measures
a highly complex matter. Four different aspects of this issue are addressed in
the second section of this work : the problem of the added predictive value of a
high-dimensional group of predictors, various types of bias affecting importance
measures derived from decision trees and ensemble methods, the influence of
extreme values on the assessment of predictors, and the selection of a very small
number of predictors for clinical applications.

A large part of these two sections is adapted from articles published in interna-
tional referred journals as a first or supervising author.



Chapitre 2

Over-optimism in statistical

learning

2.1 Supervised classification with high-dimensional omics

data

Settings

Although over-optimism issues are essentially relevant to all areas of applied
statistics, we focus our attention on the special case of supervised classification
with high-dimensional continuous data, which is particularly affected by this
kind of problems.

Let us consider a data set with p “omics” variables as predictors, including a
total of n observations corresponding to independent patients. In this synthesis,
the term “omics variables” may refer, e.g., to the expression levels of transcripts
or to the abundance of metabolites or proteins. For simplicity, we assume that
these variables are all continuous and that the number p of these variables is
large, hence the term high-dimensional omics data. For example, in microarray
gene expression studies, the number of predictors p is huge compared to n (ty-
pically, 5000 ≤ p ≤ 50000 and 20 ≤ n ≤ 300), which makes standard statistical
prediction methods inapplicable.

The term response class refers to the categorical variable that has to be predicted
based on omics data. It can be, e.g., the presence or absence of disease, the tumor

5
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subtype, or the response to a therapy (responder/non-responder). The number
of classes may be higher than two, although binary class prediction is by far the
most frequent case in practice. Omics data may also be used to predict survival
times, ordinal scores or continuous parameters. In this overview and in most
of the following subsections, however, we focus on the special case of a binary
response denoted as Y and taking values 0 and 1.

From a statistical point of view, supervised classification can be described as
follows (the framework and notations presented here are borrowed from the tech-
nical report by Bernau et al. (2011)). On the one hand we have a finite set of
classes whose labels are denoted by Y = {0, .., C − 1} where C represents the
number of different classes, here C = 2. On the other hand we have predictors
taking value in X ⊂ Rp that are used for constructing a decision function. Predic-
tors and response class follow a joint distribution on X ×Y denoted by P (x, y).
The observed i.i.d. sample of size n is denoted as s0 = (x1, y1)...(xn, yn). In our
case the data are high-dimensional, which mean that p may be much larger than
n. The classification task consists in building a decision function f̂ that maps
elements of the predictor space X into the response space Y :

f̂ : X 7→ Y

x 7→ f̂(x).

Many classification methods have been proposed in the literature to derive such
a function f from the available sample in the so-called “n� p” setting. Most of
them involve a parameter that adjusts their complexity to the sample at hand.
A brief overview of such methods is given in the next subsection. From now on,
we denote as “methods 1, . . . ,K” the considered combinations of methods and
tuning parameter values. As an example, method 1 may stand for SVM with
cost= 1, method 2 for SVM with cost= 10, method 3 for kNN with k = 5 neigh-
bors, and so on. As a special case, methods 1, . . . ,K might represent different
parameter values of the same method. No matter the signification of methods
1, . . . ,K, the decision function obtained by fitting the prediction method k to
the sample s0 is denoted as f̂s0

k .

Different approaches to the dimensionality problem

Hundreds of classification methods have been suggested in the biostatistics, bio-
informatics and machine learning literature to derive a decision function f̂ in
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high-dimensional settings. It is out of the scope of this introduction to give an
extensive overview of these methods. Instead, let us give an overview of four
common approaches to the dimensionality problem as described in more details
in Boulesteix et al. (2008b). This four approaches partly overlap and can some-
times be combined. However, they are helpful to briefly sketch the different types
of approaches.

Variable selection
The most intuitive approach consists of first selecting a small subset of predictors
and then applying a traditional classification method to the reduced data set. By
traditional methods, we mean well-known statistical methods handling a rather
limited number of predictors, such as discriminant analysis methods including
linear and quadratic discriminant analysis or Fisher’s linear discriminant ana-
lysis, classical logistic regression or k-nearest-neighbors. In principle, the latter
could be applied to a high number of predictors but performs poorly on noisy
data.

Variable selection methods can be classified as univariate and multivariate ap-
proaches. Univariate approaches consider each predictor separately : they are
based on the marginal utility of each predictor for the classification task. Pre-
dictors are ranked according to some criterion reflecting their association to the
phenotype of interest. After ranking, the first predictors of the list are selected for
further analysis. Many criteria are conceivable, for instance usual test statistics
like Student’s t-statistic or nonparametric statistics such as Wilcoxon’s rank sum
statistic. In the context of differential expression detection, several regularized
variants of the standard t-statistic have been proposed in the last few years.

Univariate methods are fast and conceptually simple. However, they do not take
correlations or interactions between predictors into account, resulting in a subset
of predictors that may not be optimal for the considered classification task. This
is obvious in the extreme case where, say, the 10 first predictors correspond to the
same transcript, yielding a strong correlation structure. It is then suboptimal to
select these 10 redundant predictors instead of predictors with a worse univariate
criterion value but giving non-redundant information.

Multivariate variable selection approaches for microarray data have been the sub-
ject of a few tens of rather theoretical articles. They take the preceding argument
seriously that the subset of the predictors with best univariate discrimination
power is not necessarily the best subset of predictors, due to interactions and cor-
relations between predictors. Therefore, multivariate variable selection methods
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do not score each predictor individually but rather try to determine which com-
binations of predictors yield high prediction accuracy. A multivariate variable
selection method is characterized by i) the criterion used to score the considered
subsets of predictors and ii) the algorithm employed to search the space of the
possible subsets, an exhaustive enumeration of the 2p−1 possible subsets being
computationally unfeasible. A very simple algorithm to address ii) consists in
ranking the predictors and selecting the top of the list. For example, this is
the algorithm recommended when using the essentially multivariate “cat-score”
approach by Zuber and Strimmer (2009) which is based on the discriminative
power of the predictors in the context of discriminant analysis.

Variable selection is the subject of the papers Boulesteix (2007) and Bernau
and Boulesteix (2010). Boulesteix (2007) suggests a fast algorithm for efficiently
ranking predictors according to the p-values of the two-sample Wilcoxon-test in
different learning sets, while Bernau and Boulesteix (2010) investigate the effect
of a preliminary variable selection on the internal cross-validation performed for
parameter tuning.

Dimension reduction
A major shortcoming of variable selection when applied in combination with
classification methods requiring the sample size n to be larger than the number
p of predictors is that only a small part of the available information is used. For
example, if one applies logistic regression to a data set of size n = 50, the model
should include at most about 10 predictors, which excludes possibly interesting
candidates. Note that a model based on few predictors may be preferred in some
cases. For instance, a practitioner might be interested in an extremely sparse
model for application in clinical settings. In this context, 10 predictors are better
than 100 predictors, because they can be measured more easily in the clinical
lab. We discuss this point more extensively in Subsection 3.5. In many cases,
however, more than 10 predictors include interesting information that we want
to take into account while derive a prediction rule.

Moreover, correlations between predictors are not taken into account by univa-
riate variable selection approaches and can even pose a problem in model estima-
tion, the more as omics data are known to often be highly correlated. An option to
circumvent these problems is dimension reduction, which aims at “summarizing”
the numerous predictors in form of a small number of new components (often li-
near combinations of the original predictors). Well-known examples are Principal
Component Analysis (PCA), Partial Least Squares (PLS, Boulesteix, 2004; Bou-
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lesteix and Strimmer, 2007) and its generalizations (Fort and Lambert-Lacroix,
2005; Ding and Gentleman, 2005). A concise overview of dimension reduction
methods that have been used for classification with microarray data is given in
Boulesteix (2006b).

After dimension reduction, one can basically apply any classification method
to the constructed components, for instance logistic regression or discriminant
analysis. However, as opposed to the original omics predictors, the components
constructed with dimension reduction techniques themselves may not be inter-
pretable any more. Note that dimension reduction methods may be used in com-
bination with variable selection, i.e. applied on a preliminarily selected subset of
predictors. Preliminary variable selection is especially beneficial to unsupervised
dimension reduction methods.

Penalization and shrinkage methods
Instead of reducing the data to a small number of (either constructed or selected)
predictors, statistical methods based on penalization or shrinkage methods es-
sentially perform an intrinsic regularization, i.e. they determine internally which
predictors should be given more importance in the final decision function. This
category includes penalized logistic regression (Zhu and Hastie, 2004), the Pre-
diction Analysis of Microarrays (PAM) method based on shrunken centroids
(Tibshirani and Efron, 2002), Support Vector Machines (SVM) (Vapnik, 1995) or
regularized linear discriminant analysis (Guo et al., 2007). Such methods usually
involve one or several penalty or shrinkage parameter(s) reflecting the amount
of regularization. Note that they can be used in combination with variable se-
lection. For example, in huge dimensional data including, say, 106 predictors,
methods such as penalized regression might benefit from a pre-filtering of the
predictors, at least in terms of computation time and storage requirement.

Recursive partitioning and ensemble methods
Some algorithms borrowed from the machine learning communities also perform
an intrinsic variable selection, although in a completely different way. Classifica-
tion trees (Breiman et al., 1984) perform an intrinsic variable selection since they
select the most relevant predictor at each split. Random forests (Breiman, 2001),
which are based on the combination of a large number of these trees, can also be
viewed as a method performing intrinsic variable selection. More generally, the
idea of ensemble methods is to combine predictions from a large number of rela-
tively simple prediction rules called “base learners”. Base learners may be, e.g.,
classification trees or linear models with only one predictor. They are usually
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based on a relatively small number of predictors – that have been somehow se-
lected. In this sense, such methods are related to variable selection. Note that
ensemble methods have partially unknown behaviors which are the subject of
recent or current research projects (Strobl et al., 2007b, 2008; Boulesteix et al.,
2011a).

Estimating the error

Suppose we have estimated a decision function f̂ using any of the classification
methods outlined in the above subsection. The true error that is to be estimated
can be written as

ε[f̂ ] = EP

[
L
(
f̂(x), y

)]
=
∫
X×Y

L
(
f̂(x), y

)
dP (x, y), (2.1)

where EP stands for the mean over the joint distribution P and L(., .) is an
adequate loss function. In this synthesis, we consider the indicator loss function,
yielding the error rate, but most concepts can be generalized to other loss func-
tions such as, e.g. the area under the curve (AUC). The rest of this subsection
and Subsection 2.1 are largely borrowed from the technical report by Bernau
et al. (2011).

For notational simplicity, the true error ε[f̂s0
k ] of method k is denoted as ε[f̂s0

k ] =
ε(k ‖ S = s0). Note that ε(k ‖ S) should be seen as a random variable, where S
stands for a random sample that follows the distribution Pn. It is usually denoted
as conditional error, where the term “conditional” refers to the considered sample
S. The mean

εn(k) = EP n [ε(k ‖ S)]

of the random variable ε(k ‖ S) is usually denoted as the unconditional true
error rate of method k. It depends only on the method k, on the size n of the
sample S and on the joint distribution P . Unlike the conditional error ε(k ‖ S),
the unconditional error εn(k) is not a random variable in our framework.

Since the joint distribution P (x, y) is unknown in practice, the conditional errors
ε(1 ‖ S = s0), . . . , ε(K ‖ S = s0) and the unconditional errors εn(1), . . . , εn(K)
have to be somehow estimated. Standard estimation approaches are based on
cross-validation (CV) or repeated subsampling, see Boulesteix et al. (2008b)
for an overview. For notational simplicity, we focus on the repeated subsampling
method in this synthesis, although many of the discussed concepts can be directly
generalized to classical CV. These resampling procedures are implemented in our
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package ’CMA’ (Slawski et al., 2008) in combination with tuning and variable
selection, that are always performed based on learning data only.

In repeated subsampling, the whole data set is randomly split into a learning
set and a test set a large number of times, e.g. B = 100 times. Each learning
set Lb, b = {1, . . . , B} of size nL (with nL < n) is used to estimate a decision
function that is subsequently evaluated on the corresponding test set S \Lb. For
each iteration b = {1, . . . , B} and each method k, k = {1, . . . ,K}, one obtains
an estimated error :

e(k ‖ Lb, S \ Lb),

where the term Lb, S \Lb means that method k was fitted to the learning set Lb

and evaluated on the test set S\Lb. Note that we use the notation e for estimators
and ε for true errors. For each method k, these test errors are eventually combined
into an error rate estimate by averaging over the iterations b = 1, . . . , B, yielding

e(k ‖ S) =
1
B

B∑
b=1

e(k ‖ Lb, S \ Lb), (2.2)

which obviously may depend on the random choice of the partitions {Lb, Tb}, b =
1, . . . , B. Note that e(k ‖ S) is an unbiased estimator of εnL(k) but an upwardly
biased estimator of ε(k ‖ S) and εn(k), because the decision functions are esti-
mated based on nL observations instead of n, with nL < n.

The ”best” method

Let us further denote the method yielding the smallest error rate based on S as
method k∗(S), i.e.

k∗(S) = arg min
k
e(k ‖ S). (2.3)

Note that the random variable k∗(S) depends not only on the sample S but, in
general, also on the considered learning sets Lb, b = 1, . . . , B. In the following
considerations, we ignore the variability due to the choice of the learning sets
and assume that they are fixed (this may be the case when all possible partitions
are considered).

For a given sample s0, the error estimate e(k∗(s0) ‖ s0) obtained by repea-
ted subsampling is a downwardly biased estimator of the true conditional error
ε(k∗(s0) ‖ s0), because k∗(s0) is chosen based on s0, i.e. such that e(k∗(s0) ‖ s0)
is minimal. In other words, if one simply chooses the method yielding the mi-
nimal error rate (e(k∗(s0) ‖ s0)), this minimal error rate underestimates the
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true error rate (ε(k∗(s0)) ‖ s0) of the chosen method. This bias is related to
the problem of multiple comparisons. If several classifiers are tried, the chance
that one of them randomly performs well rises. This bias can also be seen as the
result of the variability of the estimates e(k||S). In an ideal scenario with very
large sample sizes and low variability, no optimization would take place, and the
method k∗(S) with minimal e(k ‖ S) would also be the method with minimal
true conditional error ε(k ‖ S) and with minimal true unconditional error εn(k).
A quantitative assessment of this bias in the special case of binary classification
with small sample high-dimensional gene expression data is given in Boulesteix
and Strobl (2009) and summarized in the Subsection 2.3.

2.2 Spoilt for choice ?

Multiplicity of methods

In this part, we take the perspective of a statistician whose task is to analyse
a concrete data set in the context of a collaboration with biomedical scientist.
In most common statistical problems, a broad range of more or less appropriate
methods is available to the informed user. The number of “candidate” methods
that may be chosen usually depends on :

The explorative character of the study
Whereas statisticians usually restrict to a small number of well-established stan-
dard procedures in confirmative studies, the willingness to try recent experimen-
tal approaches increases with the explorative character of the study. Clinical
trials, whose analysis is subject to guidelines from the regulatory authorities, are
an extreme example of studies with a conservative profile. In practice, the range
of available methods is restricted to those methods that have good chance to pass
the regulatory processes. At the other extreme, exploratory studies of descriptive
nature are the ideal place for experimenting new procedures. They are corres-
pondingly characterized by a wide range of potential methods. Between these
two extremes, many parameters play a role, including the biomedical scientist’s
personality and his readiness to explore new horizons beyond well-established
standard methods, the research area’s conventions and culture, or, from a purely
strategic point of view, the editorial line of the target journals.

The history of the considered type of data
The choice may be very limited for a completely new data type and a novel
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research problematic. Conversely, the user often has to choose between a large
number of methods if the statistical community had the time and opportunity to
work on the considered question. An extreme example of the latter situation is
supervised classification with high-dimensional data, that has been the subject
of hundreds of methodological publications in bioinformatics, (bio-)statistics and
machine learning journals and conference proceedings in the last ten years. In
this context, the space of potential methods is virtually infinite.

In parallel, the community tends to establish standards and guidelines as time
goes by. In an ideal world, these standards are the results of well-done compara-
tive studies and consensus from independent teams. However, other factors might
contribute to promote a particular method, including the reputation of the au-
thors, the renown of the journals the method was published in, well-documented
and user-friendly implementations or an application of this method in one of
the few leading scientific journals that other scientists tend to imitate. A sta-
tistician cannot reasonably support the strategy consisting to choose a method
solely based on a previous publication (that may be erroneous or consider data
with different characteristics), or based on the expected reaction of reviewers
who may systematically reject new approaches or conversely systematically re-
commend complex methods over more simple procedures. However, methods
used in a previous publication have the major advantage that they allow a more
consistent comparison between the two studies. And from a pragmatic point of
view, it is natural to take into account the expected reaction of reviewers in
addition to purely scientific considerations, all other things being equal.

No matter how standards are established and whether the process is satisfying or
not, the natural increase of the number of available is in practice counterbalanced
by the emergence of non-written and vaguely defined standards and guidelines.
When plotted against time, the number of available methods that can potentially
be used in a concrete study finally often takes the form of an umbrella. The
number of potential methods first increases, especially in the case of a scientific
“hype”. It subsequently decreases as standards are established, since it becomes
harder and harder to justify the use of a non-standard “exotic” approach. This
mechanism is described in the next paragraph in the special case of supervised
classification for high-dimensional data.
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Supervised classification for high-dimensional data

As already mentioned above, hundreds of methods for supervised classification
with high-dimensional have been suggested in the literature by statisticians, com-
puter scientists or biomedical scientists with computational background. At the
beginning of the “microarray era”, i.e. in the early 2000s, virtually any method
would probably have gone through the review process of most journals – if ap-
plied correctly (or not...) to a good study. The number of candidate methods
was steadily increasing. Later on, in the middle 2000s, some methods grew to
standard methods – for various reasons that we have already briefly mentioned.
Drawing a list turns out to be highly subjective task and all lists may be subject
of controversy. Let us only mention a few well-known examples like Lasso logis-
tic regression, nearest shrunken centroids and other forms of linear discriminant
analysis, or support vector machines.

Nowadays, it is probably more difficult than 5 or 10 years ago to publish an
analysis using a non-standard “exotic” approach in a high-ranking biomedical
journal. It would probably require a thorough justification which is essentially
impossible to give, since it is extremely hard to show that the standard methods
are less appropriate than the new exotic method. It is easy to show that a
standard regression problem with three predictors departs from linearity and
that a non-linear method like splines regression or fractional polynomials is thus
more appropriate. But it is by far less easy, if not hopeless, to show that method
A is more appropriate than method B in high-dimensional settings. Readers
may legitimately wonder why the authors of the study of interest used this
strange non-standard method. Because they know only this method ? This would
indicate lack of expertise, and the study’s results should be considered with
caution. Because they know/like this method much better than existing standard
methods, perhaps even as developers of this new method ? It is admittedly a bad
idea to use a method one is not familiar with. And it is natural to apply in practice
an in-house method one has worked on for years. However, these arguments are
certainly not sufficient to exclude standard methods with a well-known behavior
that would allow easier comparison to previous studies.

Last but not least, the authors might have used a “strange non-standard” me-
thod simply because it yielded better results than standard methods. Again, this
argument seems natural and at first view valid. However, such a strategy is extre-
mely likely to hide a “fishing for significance” or a “data dredging” mechanism.
By “fishing for significance”, we mean the strategy to try different methods and
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to select – or “fish” – for the most favorable results, for instance the lowest CV
error rate in the special case of supervised classification. In the situation sket-
ched above, the researchers would try various methods including a few standard
methods, but find better results with a non-standard method, and report only
these better results ! An article presenting classification results obtained with an
experimental non-standard might thus be suspected of “data dredging” or “fi-
shing for significance, except if it gives really good reasons for not using standard
methods.

Note that data dredging and fishing for significance are by far not limited to
studies using non-standard approaches, as we will quantitatively outline in the
next subsection. Fishing for significance can occur in any study, provided that
several more or less appropriate methods are available for the problem at hand.

2.3 Optimistic bias of the optimal error rate

An empirical study

In biometric practice researchers often apply a large number of different methods
in a “trial-and-error” strategy to get as much as possible out of their data and,
due to publication pressure or pressure from the consulting customer, present
only the most favorable results. This is particularly true in the context of super-
vised classification with high-dimensional data, which is characterized by a lack
of standards and guidelines.

Using the notations defined in subsections 2.1 and 2.1, it means that the resear-
chers would report e(k∗(s0) ‖ s0) only, where s0 denotes the particular considered
data set. Obviously, e(k∗(s0) ‖ s0) is a downwardly biased estimate of the true
unconditional error εnL(k∗(s0)) of the most favorable method k∗(s0).

We conducted an empirical study based on two real microarray data sets (colon
cancer data by Alon et al. (1999) and prostate cancer data by Singh et al.
(2002)) to assess this bias quantitatively in realistic settings (Boulesteix and
Strobl, 2009). In our study we considered a total of 124 variants of classification
methods (possibly including variable selection or tuning steps) within a 5-fold
cross-validation evaluation scheme.

In the first study, the classification methods were applied to permuted versions
of the two considered data sets that are simply obtained by randomly permuting
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Figure 2.1 – Permutation-based analyses. Boxplots of the minimal error error
over 1) 124 combinations of classification method, variable selection method and
parameter value (1st boxplot), 2) 22 combinations of classification methods and
variable selection method, parameter values being kept fixed (2nd boxplot), 3) 10
classification methods, variable selection and parameter values being kept fixed
(3rd boxplot). For comparison, the fourth boxplot represents the errors estimated
with all classification methods without optimization process. Left : colon cancer
data. Right : prostate cancer data.

the response class in a balanced way. For 20 random permutations, Figure 2.1
displays boxplots of the minimal error over 1) 124 combinations of classification
method, variable selection method and parameter value (first boxplot), 2) 22
combinations of classification methods and variable selection method, parame-
ter values being kept fixed (2nd boxplot), 3) 10 classification methods, variable
selection and parameter values being kept fixed (3rd boxplot). For comparison,
the fourth boxplot represents the errors estimated with all classification methods
without optimization process. Figure 2.1 clearly shows that the optimization bias
cannot be ignored in practice. In the colon cancer data set, a median minimal
error rate as low as 31% is obtained – although there is no association between
response and variables !
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On the difficulty of error rate estimation in n� p settings

Over-optimism due to the various optimization mechanisms results from insuf-
ficient sample size. If the sample size were very large, we would not have any
optimization bias. Optimization biases are observed because resampling-based
error estimates have large unknown variance, and are even virtually uncorrela-
ted with the actual error (Hanczar et al., 2007) in small sample settings. Thus,
the methods/variable selection methods/parameter values yielding the smallest
error rates with a particular data set do not necessarily have the smallest true er-
ror rates, hence the risk of over-optimization and the discrepancy between error
rates obtained on training and validation data sets. This explains why optimiza-
tion biases, which are relevant to all statistical research areas, particularly affect
the analysis of small sample high-dimensional data.

The curse of the multiplicity of methods

The so-called curse of dimensionality has been abundantly discussed in biosta-
tistics and bioinformatics literature in the context of high-dimension prediction.
Various types of optimistic biases pointed out in the literature can be seen as
the consequence of bad practice enhanced by the curse of dimensionality. For
instance, performing variable selection using both learning set and test set can
be seen as bad practice (Ambroise and McLachlan, 2002) but it has less dramatic
consequences in low dimensions than in high dimensions. In this sense, the curse
of dimensionality acts as a distorting mirror for bad practice.

The results presented in Boulesteix and Strobl (2009) and summarized in the
last subsection show that the curse of dimensionality also combines with a me-
chanism that we denote as curse of multiplicity of methods to produce strongly
biased error estimates. As outlined above, the multiplicity of methods itself is
not sufficient to produce a bias. Without the high variability of error estimation,
which itself results from the curse of dimensionality, there would be no bias.

Note that the bias of e(k∗(s0) ‖ s0) as an estimator of ε(k∗(s0) ‖ s0) can also be
paralleled to the selection bias outlined by Ambroise and McLachlan (2002) in
the sense that both biases result from a bad separation between the learning set
and the test set. As far as the variable selection bias is concerned, the test data
are used in the learning process to select variables. Similarly, when estimating
ε(k∗(s0) ‖ s0) by e(k∗(s0) ‖ s0), one implicitly uses the test sets Tb to select
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the best method k∗(s0), i.e. the tests sets are used to choose the final decision
function f̂ s0

k∗(s0).

From the empirical study by Boulesteix and Strobl (2009), it is clear that one
should definitely not report only the best result e(k∗(s0) ‖ s0), because this
strategy generates a considerable optimistic bias. In practice, the bias due to the
optimal selection of the tuning parameters of a fixed classification method is often
addressed by nested cross-validation (Varma and Simon, 2006) as implemented
in our Bioconductor package ’CMA’ (Slawski et al., 2008). Within each cross-
validation iteration, the best parameter value is determined based on an inner
cross-validation procedure and the error rate is then computed for this parameter
value. The final error rate estimate is obtained by averaging over the cross-
validation iterations. Note that, doing that, one averages error rates obtained
with different parameter values.

Going one step further, one could theoretically consider the classification me-
thod as a (nominally scaled) tuning parameter and also address the choice of the
classification method using nested cross-validation. However, besides substan-
tial interpretation problems, this approach would be extremely computationally
expensive and difficult to apply in practice for methods involving a tuning para-
meter that also has to be tuned via inner cross-validation.

Research perspective : bias correction

In a current research project, Christoph Bernau aims at correcting the bias of
e(k∗(s0) ‖ s0) as an estimator of ε(k∗(s0) ‖ s0), because, roughly speaking, we
are interested in the expected performance of the “best method” k∗(s0) on inde-
pendent data. The objective of this current project is two-fold. Firstly, we develop
a new method for tuning bias correction by embedding the tuning problem into
a decision theoretic framework. The method is based on the decomposition of
the unconditional error rate involving the tuning procedure. The corrected error
estimator can be written as a weighted mean of the errors obtained using the
different parameter values. It can be interpreted as a smooth version of nested
cross-validation, where the weighting scheme guarantees intuitive bounds for the
corrected error. Secondly, we suggest to also use bias correction methods – like
our new approach, NCV, or the approach by Tibshirani and Tibshirani (2009)
– to address the bias resulting from the optimal choice of the classification me-
thod, which has never been done in the literature to our knowledge. The results
suggest that the news correction method yields similar results as NCV but at
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a much lower computational price. This approach is presented in the technical
report by Bernau et al. (2011).

The estimation of the variance of the unconditional error rate plays a crucial role
in this correction procedure. It is a non-trivial problem (Bengio and Grandvalet,
2004) without completely satisfying solutions to date. We also aim to examine
this estimation problem more precisely, to compare existing estimator, and to
assess the impact of variance estimation procedures on the comparison of classi-
fication methods in methodological research.

Research perspective : other types of bad separation between learning
set and test set

Prediction models aim to make predictions for future patients. These future
patients are not yet in the available data set. To estimate the error rate on future
patients, e.g. by repeated subsampling (see Subsection 2.1), one thus has to derive
decision functions on the learning sets Lb without seeing Tb (for b = 1, . . . , B).
The separation between Lb and Tb should be perfect. In particular, variable
selection should be performed using the learning sets Lb only (Ambroise and
McLachlan, 2002) as already discussed above. Similarly, one should not estimate
ε(k∗(s0) ‖ s0) as e(k∗(s0) ‖ s0) because it would imply that the test sets Tb are
used both for the estimation of the error ε(k∗(s0) ‖ s0) and for the selection of
the decision function f̂s0

k∗(s0). The same data are thus used to choose the decision
function and to estimate its error : separation between learning data and test
data is not perfect. These are only two examples of bad separation among others.
Many important separation problems have not been studied extensively in the
literature.

For example, it is common practice to normalize microarray data using the whole
available data set. In the context of repeated subsampling, almost nobody would
imagine normalizing the data anew at each of the B iterations using the learning
set Lb only. And even if we would do that, how should be normalized the test
set Tb subsequently ? Normalizing the test set Tb separately is a bad idea if Tb is
small, and impossible in the case of leave-one-out cross-validation. Approaches
for normalizing the test data using the normalization parameters estimated from
the learning data have been recently proposed (Kostka and Spang, 2008), but
they are not yet well-established. In practice, all statisticians who estimate the
error rate via repeated subsampling normalize their microarray only once, using
the whole data set. Doing so, they implicitly use the test sets in the learning
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process at each subsampling iteration, since the test set may affect the decision
function via the normalization procedure.

Other similar examples are pre-processing steps such as the imputation of missing
values, scaling of the predictors, or dichotomization of the predictors. Such pre-
processing steps are almost always performed using the whole data set in practice
and not at each subsampling iteration anew. It is unclear whether this “bad
separation” of learning set and test set affects the estimation of the error rate,
and if yes, how we should proceed to accurately estimate the error rate that we
would obtain using independent data that have not been seen before – neither
by the statistician and nor by the algorithm.

The case of unsupervised learning

Over-optimism in the context of unsupervised statistical problems is even more
difficult to address, because the truth is unknown. Whereas one may compare
the minimal error rate of 31% in the permuted data sets to the expected error
rate of 50%, such a study cannot be performed in this form for unsupervised
problems.

However, optimization mechanisms may also be at work in unsupervised pro-
blems, and they may be even more dangerous since it is less easy to quantify
the potential bias. Let us consider the example of different criteria used to rank
predictors according to their association with an outcome of interest. A typical
example is the assessment of differential gene expression across two conditions
for thousands of genes whose expression levels are measured using microarrays.
Plenty of ranking criteria have been used or/and suggested to rank the genes
in these context, including the straightforward p-value of the two-sample t-test,
ranked-based approaches, or various regularized versions of the t-statistic. Some
of these statistics are implemented in user-friendly software, such that an in-
formed data analyst might apply several criteria to his/her data set in a very
short time. Most importantly, these criteria usually yield very different lists of
top-genes in small sample high-dimensional settings, as extensively discussed in
Boulesteix and Slawski (2009).

The multiplicity of available methods may lead to a substantial optimistic bias
in this context in the sense that some researchers might choose their ranking cri-
terion in an iterative optimization process. For example, if the “favorite feature”
is not identified as top-ranking by a particular criterion, biomedical scientists are
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more likely to urge their statistical consultant to try out another statistic than
if they find their favorite feature in the top-list. By favorite feature, we mean for
instance a feature that is expected to be relevant based on biological knowledge,
the feature that is expected to rank best based on a previous study, or conversely
a feature which has not yet been identified as relevant in this context and may
thus yield an innovative ground-breaking marker.

The same holds in the more complicated case of network analyses. A plethora
of methods are available for network reconstruction from high-dimensional data.
Similarly to the problem of predictor ranking even similar variants of the same
method often yield completely different results. For instance, in the paper by
Krämer et al (2009) we consider a specific family of methods all based on the
graphical gaussian networks (GGM) methodology. The considered methods can
be seen as different estimation procedures for the same underlying model. Despite
this common framework, the five considered methods (based on the shrinkage
estimator of the covariance, on Lasso regression, on adaptive Lasso regression,
on ridge regression, and on Partial Least Squares regression respectively) yield
substantially different results, i.e. a moderate overlap of the sets of common
edges.

Such differences may also indirectly lead to a bias, in the sense that the biologist
is more likely to report in his/her paper a network that, e.g. shows a charac-
teristic hub around a particular transcription factor of interest. In the previous
subsection, we have seen that the choice of the prediction method through op-
timization of the estimated error rate may yield substantially optimistic results
due to the high variability of the procedures. Similarly, if the network reconstruc-
tion method is chosen a posteriori (because it yields a network that is in some
way “more interesting” than the networks output by other methods), this result
is in a way also optimistically biased. More concretely, suppose that four network
reconstruction methods identify no hub and the fifth one identifies a hub. The
strategy consisting to choose the method that identifies the hub just because it
identifies a hub is biased. Similarly to the case of supervised learning, this bias
essentially grows with the between-method variability and with the variability
of estimation.

Similar problems may also occur in clustering analyses. Although this is often
ignored (at least in final published papers), clustering analyses are known to
be highly instable in the sense that different clustering algorithms may yield
completely different results and that the results tend to be sensitive against
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changes in the data set. In a current research project with a master student, I
am interested in the quantification of this instability via resampling analyses.
More precisely, the student is developing resampling-based importance measures
for each object and each variable. By “object”, we simply mean the objects
that have to be clustered, while in this context the term “variable” denotes the
variables characterizing the objects.

2.4 Optimization in methodological research

Optimization mechanisms and biases as outlined in Subsection 2.3 may also be at
work in methodological research, although this aspect is by far less acknowledged
in the literature.

Evaluation criteria for newly developed methods

The main goal of methodological statistical research is the development of new
methods. Other types of works, like comparison studies and reviews, are consi-
dered as less exciting and less useful by many researchers and by most journal
editors. Note that this is in contrast with biomedical research, where review
articles or meta-analyses are usually considered as extremely valuable research
outputs. In this subsection, we focus on the research projects dealing with new
statistical methods, and we illustrate the presented ideas based on examples re-
ferring to the development of new prediction methods, in particular variants of
discriminant analysis.

New methods are supposed to outperform existing methods in some sense. Which
criteria should be used to evaluate new methods ? This apparently simple ques-
tion does not have any unique answer, all the more since the answers strongly
depend on the specific problem at hand, on the considered sub-area of applied
statistics, and on the field of application. Indeed, each community, each team
and even each researcher may develop its own non-written rules.

From a theoretical point of view, properties such as e.g. the bias, consistence
or variance of an estimator, the power of a statistical test, or the mean and va-
riance of the error rate of a statistical learning method are important criteria.
These theoretical properties can often merely be proven under (very) restrictive
assumptions, for instance when the size of the sample goes to infinity and/or
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when the distribution of the random variable of interest fulfills specific require-
ments. From a practical point of view, agreement between the assumptions and
the reality of the data in the considered field plays a major role. A theoretical
property may be considered as a strong advantage in a field of application where
the assumptions are fulfilled, but less interesting in another field. Assumptions
are often not fulfilled in omics data analysis because of high-dimensionality, high
correlation between the variables, etc. It is of course advantageous to know the
behavior of a new method under simplifying assumptions. All other things being
equal, a new method fulfilling theoretical properties under unrealistic assump-
tions is certainly better than a new method with theoretically unknown beha-
vior. The question whether one should favor theoretical properties over other
advantages is almost a philosophical one and strongly depends on the considered
context. We do not intend to answer this question here but rather to give an
overview of possible criteria for judging a new method.

From a pedagogical point of view, one should not forget that the method is
destined to be used... by experts or non-expert users. Therefore, the simplicity
of a new method constitutes an important advantage, all other things being
equal. A complicated “good method” is unlikely to be correctly understood and
used by an audience of non-specialists – and sometimes even by specialists. Users
will thus more likely give up using it and settle for a more simple (but possibly
inappropriate) method. They are also more likely to use the new complicated
method incorrectly, for instance i) because they do not correctly understand the
implied assumptions and use it in a case where it should not be used, ii) because
they make an implementation error, or iii) because they choose the parameters
inappropriately. In this sense, all other things being equal a simple method should
be preferred to a more complicated method. Note that this criterion is rarely
invoked in methodological articles presenting new methods. In some sub-areas
of applied statistics, simplicity might rightly or wrongly raise suspicion.

The absence or small number of critical parameters is a particular aspect of
simplicity. On the one hand, it limits the risk that inexperienced users choose
parameters inadequately. On the other hand, it limits the risk that developers and
expert users overfit the data they analyse by optimizing the parameters based
on the final results of the different parameter combinations. The latter problem
is related to the “fishing for significance” problem discussed in Subsection 2.3.

From a technical point of view, particular attention may be devoted to compu-
tational aspects such as computation time, storage requirements, the influence
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on initial values in an iterative algorithm, or more generally the dependence on
a random generator. Users might give up using a “good method” because of a
few successive computer bugs due to memory requirement problems or because
they cannot afford to wait five days for the results (they would probably wait if
they had to, but they would not wait if they just wanted to “try” the method
as one of several candidates).

Other important aspects include the ability to generalize to other related pro-
blems and, conversely, the embedding of the method in a more general framework.
Such criteria are important because related methods often share related beha-
viors or related characteristics, and because results obtained within the same
framework are often easier to compare. The ability to generalize and to fit into
a more general framework is also important from the pedagogical point of view
mentioned above. That is because potential users are more likely to understand
and use a method correctly if they are familiar with another method within the
same framework.

Last but not least, new methods are of course evaluated based on objective
criteria telling us us whether they do what they were developed for. In the context
of supervised classification, it can for instance be the error rate or the area under
the receiver operating characteristic (ROC) curve. In the context of hypothesis
testing, one may assess the power under various kinds of alternative hypotheses.
These criteria are most often assessed in simulations, especially in the context of
statistical problems with “unknown truth”, for instance the ranking of variables.
In the context of statistical learning for omics data, however, simulations usually
do not play such a major role. That is because simulation designs are often
believed to poorly reflect the complexity of the data. In this context, it is common
practice to apply the newly developed method to one or several “real data sets”,
for instance data sets extracted from public data repositories. A better error
rate is then usually considered as an argument in favor of the new method.
Indeed, many abstracts contain a sentence like “our method performed better
than existing methods on real data”.

On the one hand, this approach for assessing a new method seems natural : all
researchers are more interested in methods that “work” than in methods that
“do not work”. However, this approach also raises important epistemological pro-
blems that are surprisingly widely ignored in the literature. Firstly, in a testing
perspective, two or three data sets as often considered in practice are not suffi-
cient to establish the superiority of a new method. Secondly, the term “performs
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better” is widely used in the literature but not well-defined from an epistemo-
logical point of view. These problems require further research, especially in the
context of high-dimensional data. I will try to address them in future research.
Thirdly, quantitative criteria are often affected by a strong optimistic bias in
the same spirit as the bias discussed in Subsection 2.3. Virtually all methodo-
logical research projects might end up with biased results in the sense that the
results are tuned so as to optimize the quantitative criterion of interest. We will
see an example of such optimization mechanisms in Subsection 2.4, and present
quantitative results based on a concrete example in Subsection 2.4. These two
subsections are adapted from the article by Jelizarow et al. (2010).

Sources of bias in methodological research

The reported results on the performance of new statistical learning algorithms are
known to be over-optimistic, as discussed in my letter to the editors of Bioinfor-
matics (Boulesteix, 2010) in the particular context of statistical bioinformatics.
Several sources of bias can be identified.

The first and perhaps most obvious reason for over-optimism is that researchers
sometimes randomly search for a specific data set such that their new method
works better than existing approaches, yielding a so-called “data set bias”. While
a method cannot reasonably be expected to yield “universally better” results in
all data sets, it would be wrong to report only favorable data sets without men-
tioning and/or discussing the other results. This strategy induces an optimistic
bias. This aspect of over-optimism is quantitatively investigated in the study by
Yousefi et al. (2010) and termed as “optimization of the data set” here.

The second source of over-optimism, which is related to the optimal choice of the
data set mentioned above, is the optimal choice of a particular setting in which
the superiority of the new algorithm is more pronounced. For example, resear-
chers could report the results obtained after a particular feature filtering which
favors the new algorithm compared to existing benchmark approaches. This me-
chanism, which is strongly related to data overfitting, is termed as “optimization
of the settings” here.

The third source of over-optimism is related to the choice of the existing bench-
mark methods applied for comparison purposes. Researchers are supposed to
compare their new algorithm to state-of-the-art methods, but may consciously
or subconsciously choose suboptimal existing methods and exclude the best com-
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peting methods from the comparison for any reason, e.g. because running the
software demands very particular knowledge, because previous authors excluded
these methods as well, because the methods induce high computational expense
or because they belong to a completely different family of approaches and thus
do not fit in the considered framework. Then the new algorithm artificially seems
better than competing approaches and over-optimistic results on the superiority
of the new algorithm are reported – because the best competing approaches are
disregarded. Since the definition of state-of-the-art methods is often ambiguous,
such problems may occur even when researchers are decided to perform a fair
comparison. This mechanism, also known as “straw-man phenomenon” is termed
as “optimization of the competing methods” here.

Finally, researchers often tend to optimize their new algorithms to the data sets
they consider during the development phase (Boulesteix, 2010). This mechanism
essentially affects all research fields related to data analysis such as statistics,
machine learning, or bioinformatics. Indeed, the trial-and-error process consti-
tutes an important component of data analysis research. As most inventive ideas
have to be improved sequentially before reaching an acceptable maturity, the
development of a new method is per se an unpredictable search process. The
problem is that, as stated by the Bioinformatics editorial team Rocke et al.
(2009), this search process leads to an artificial optimization of the method’s
characteristics to the considered data sets. Hence, the superiority of the novel
method over an existing method (as measured, e.g. through the difference bet-
ween the cross-validation error rates) is sometimes considerably overestimated.
In a concrete medical prediction study, fitting a prediction model and estimating
its error rate using the same training data set yields a downwardly biased er-
ror estimate commonly termed as apparent error. In the same spirit, computing
cross-validation error rates with different classifiers and systematically selecting
the classifier variant with the smallest error rate yields a substantial optimiza-
tion bias (Boulesteix and Strobl, 2009). Similarly, developing a new algorithm
(i.e. selecting one of many variants) and evaluating it by comparison to existing
methods using the same data set may lead to optimistically biased results in
the sense that the new algorithm’s characteristics overfit the used data set. This
source of over-optimism is termed as “optimization of the method’s characteris-
tics” here.

The four mechanisms discussed above may lead to over-optimistic conclusions
regarding the superiority of the new method compared to existing methods.
The importance of validation with independent data has recently gained much
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attention in biomedical literature. For instance, we refer to the empirical study
by Daumer et al. (2008) which points out the usefulness of a pre-publication
validation strategy based on data-splitting. To our knowledge, no such study
was performed in the context of statistical research and this issue is largely
ignored in the literature.

An empirical study

We performed an empirical study to fill this gap (Jelizarow et al., 2010). It
reviews and illustrates the problem of validation and false research findings
through a concrete example from a current research field : the incorporation
of prior biological knowledge on gene functional groups into high-dimensional
microarray-based classification. The “promising idea” we pursue here is to ex-
tend the shrinkage correlation estimator of Schäfer and Strimmer (2005) to in-
corporate prior knowledge on gene functional groups with the aim to improve
the performance of linear discriminant analysis. This approach combines a simple
and well-established statistical method, regularized discriminant analysis, with
the incorporation of prior biological knowledge on gene functional groups, a po-
pular concept that has attracted a lot of attention in the last few years.

While this method does not yield any improvement in terms of prediction error
rate, it is straightforward to produce over-optimistic results via any of the four
mechanisms discussed above. Based on this example, we demonstrate quantitati-
vely that optimization of the data set, optimization of the settings, optimization
of the competing methods and, most importantly, optimization of the metho-
d’s characteristics can lead to substantially biased results and over-optimistic
conclusions on the superiority of the new method. This study is deliberately of
empirical nature. We neither model the different sources of over-optimism theore-
tically nor do we derive analytical expressions of the resulting bias for simplified
situations, because we feel it would not reflect the complexity of the addres-
sed mechanisms. Instead, we stick to concrete observations to illustrate what
consciously or subconsciously happens in virtually all methodological projects –
possibly including our own projects. We are convinced that most biased results
are presented by mistake and that the involved researchers are disposed to make
efforts towards better practice.

In a nutshell, we consider 10 variants of our new statistical learning algorithm
together with 12 preliminary variable selection procedures. These methods are
applied to four real microarray data sets. For each data set successively, we select
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the variant and the variable selection scheme yielding the smallest estimated
error rate. This estimated error rate is typically small, since it is the result of
an optimization. If the same combination of variant and variable selection is
applied to another of the four data sets, however, the obtained error rate of
this combination is not small anymore, as can be seen from Table 2.1. These
results illustrate the optimization mechanisms discussed above (optimization of
the settings and optimization of the method’s characteristics).

CV error in CV error in CV error in CV error in

Prediction method data set 1 data set 2 data set 3 data set 4

optimal variant according to data set 1 0.025 0.180 0.345 0.152

optimal variant according to data set 2 0.079 0.129 0.363 0.141

optimal variant according to data set 3 0.029 0.221 0.342 0.115

optimal variant according to data set 4 0.033 0.274 0.384 0.078

Table 2.1 – Cross-validation (CV) error of the optimal variant/variable selection
scheme selected in each of the four data sets. For example, the variant yielding
the smallest CV error rate 2.5% in data set 1 yielded an error rate of 18% in
data set 2. The figures outside the diagonal can be understood as “validation
error rates”.

Other sources of bias

As illustrated above, the four investigated sources of over-optimism may yield
substantially over-optimistic results. Beyond these four mechanisms, various other
sources of over-optimism may also affect the reported results. For instance, one
might optimize the evaluation criterion : the sensitivity and specificity may yield
other results than the error rate, especially in case of strongly unequal class sizes.
The applied normalization technique may also affect the results and yield optimi-
zation potential. Another indirect source of over-optimism is related to technical
problems : if an implementation problem occurs with the competing approaches
and slightly worsens their results, researchers often tend to spontaneously accept
these inferior results. Conversely, they would probably obstinately look for the
error if such problems occur with their new algorithm. Note that the validation
strategy recommended here would not help in this case, since the error in the
competing methods would also affect the validation phase.
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On cross-validation (CV) as a potential solution

Our results demonstrate that validation based on independent data sets (i.e.
looking at the error rates outside the diagonal in Table 2.1) avoids hasty over-
optimistic conclusions and automatically corrects for the optimization of the
settings and optimization of the methods’ characteristics. A natural question
is whether a CV procedure (or related approach) might be used in place of
validation with independent validation data.

CV is useful to choose the best number of genes and the best variable selection
scheme for each method considered in the comparison study. Such a CV correctly
addresses the “optimization of the settings” mechanism and is sometimes used in
methodological studies, as recommended in Ambroise and McLachlan (2002) for
the number of genes. From a theoretical point of view, CV could also be applied to
select the methods’ characteristics (i.e. to select among the 10 considered variants
of the new method). In this case, however, the application of a CV procedure
is much more problematic because the different variants of the new method are
usually not investigated simultaneously in practice. Researchers typically begin
with the most intuitive variant. Having realized the latter’s sub-optimality (e.g.
in terms of error rates) they investigate a few alternative variants, which often
requires up to several months. Presenting first results at conferences often leads
to fruitful discussions with other researchers, resulting in further variants of the
original method, and so on.

While the ten variants are considered simultaneously in the present study, this
process typically drags on in practice, and the variants are investigated rather
successively than simultaneously. Therefore, researchers cannot be expected to
perform an internal CV to choose between variants they have explored (and
rejected) at the beginning of their project. An advantage of validation with fresh
data over cross-validation is that it ensures a more stringent separation between
data used for development and data used for evaluation. Cross-validation might
be incomplete in practice, for instance if researchers forget some of the variants
they have tried some time ago. In statistical learning terminology, we would
say that they select a “tuning parameter” (here : the methods’ characteristics)
using the whole training set instead of repeating the selection procedure in each
iteration. Such human errors cannot occur if validation is performed with a fresh
data set after having developed a method. Moreover, validation based on other
independent data sets has the considerable advantage that it takes the variability
between data sets into account, a very important aspect discussed in the next
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subsection.

Finally, CV induces substantial computational expense. Using a complete em-
bedded CV procedure involving three layers to i) estimate the error rate, ii) select
the number of genes, the variable selection scheme and some additional tuning
parameters of the method internally, iii) select the best variant of the method
(among the 10 candidate variants) internally rapidly becomes computationally
intractable and, in general, cannot be recommended in practice.

On the difficulty of error rate estimation

Most importantly, over-optimism due to the various optimization mechanisms
results from insufficient sample size. If sample sizes were in the hundreds of
thousands, the problems would be solved because they result from imprecision
of the error estimates (Yousefi et al., 2010; Hanczar et al., 2010). Optimiza-
tion biases occur because cross-validation error estimates have large unknown
variance (Braga-Neto and Dougherty, 2004). These estimates are even virtually
uncorrelated with the actual error (Hanczar et al., 2007) in small sample settings.
Thus, the methods/variants/settings yielding the smallest error rates with a par-
ticular data set do not necessarily have the smallest true error rates, hence the
risk of over-optimization and the discrepancy between error rates obtained on
training and validation data sets. This explains why optimization biases, which
are relevant to all statistical research areas, particularly affect the analysis of
small sample high-dimensional data.

The real problem is thus the absence of suitable means of error estimation based
on a single data set. When comparing prediction methods, we would like to reject
the “null hypothesis” that a newly proposed prediction algorithm has an error
rate higher than or equal to the error rate of competing approaches. However,
this possibility is killed at the outset by using CV on a single data set because
the internal variance (i.e. the variance within a single data set) can be estimated
but not the external variance (i.e. the variance between data sets). In a way,
this external variance is taken into account when applying the algorithms to
validation data. Note that the external variance could be potentially taken into
account by using several training data sets. However, the estimation of external
variability based on a small number of data sets is also a non-trivial issue.
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On simulations as a potential solution

Another way to take this “between-data sets” variance into account is to perform
simulation studies. However, while simulations are often extremely useful (Mehta
et al., 2004), some aspects of the developed methods can only be evaluated
through real data studies. A general problem in high-dimensional data analysis
is that it is very difficult to generate realistic data sets. Our example of a new
statistical learning algorithm incorporating prior biological knowledge can be
seen as an extreme case, since it involves a complex cluster structure with clusters
of different sizes that potentially overlap. An additional difficulty is that the
performance of our promising idea essentially depends on two components : 1) the
ability of the new method to adequately incorporate knowledge on the structure
of the predictors into the statistical learning algorithm and 2) the quality of
the available biological information. While simulations may address the first
aspect at the price of simplifying assumptions on the data structure, the second
aspect can only be assessed through real data studies. Finally, we point out
that simulation studies are potentially also affected by conscious or subconscious
optimization mechanisms.

What next ?

Applying the new method to “validation data sets” that have not been used
during the development phase is certainly a good idea and may in some cases
moderate hasty over-optimistic conclusions. However, it is important to note that
1) a method cannot reasonably be expected to always perform better than all
other methods, 2) even if there were such a universally better method for a consi-
dered problem, (too) many validation data sets would be required to establish
this superiority considering the high variability across data sets. Consequently,
a “solution” to over-optimism problems in methodological research is probably
to admit that, from an epistemological point of view, we simply cannot esta-
blish the superiority of a new method on real data. Real data analyses should
probably be rather seen as illustrations or as proofs of concepts than as a strict
evaluation criteria for the new methods. Last but not least, other criteria such
as those discussed in Subsection 2.4 should probably be given more attention.
Editors/reviewers may partially relax the request for performance improvement
on real data so that researchers would be less encouraged to “fish for significan-
ce” (Boulesteix, 2010). Furthermore, I believe that the occasional publication of
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well-designed studies on promising sensible ideas with disappointing quantitative
results may in the long run contribute to a less optimistically biased literature.



Chapitre 3

Relative importance of

predictors

3.1 Preliminary

In biometric practice, the development of prediction models discussed in the
previous section is only one part of the problem. Biomedical researchers are
interested in prediction models, but they keep in mind that their prediction
model has only poor chance to get applied in practice by other scientists. With
a few exceptions, prediction models presented in biomedical publications are
themselves less important than the predictors they include. In other words, the
motivation of biomedical researchers is not only to obtain a good prediction
model, but also to find out which predictors are more relevant to the prediction
problem. That is what we denote as “relative importance” of the predictors in
statistical learning.

At first view, this problem seems more easy to address than the development
of a prediction model. After all, the development of prediction rules takes the
relative importance of predictors into account. The determination of the rela-
tive importance of predictors in statistical learning, however, is not simply of a
“subset” of the supervised learning task. Above all, it is a badly defined problem
involving various issues related to statistical learning. It may have different mea-
nings depending on the considered sub-field of applied statistics, on the field of
application, on the investigated substantive research question and perhaps even
on the philosophy of the statistician. In this part, we highlight the variety of
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concepts related to the relative importance of predictors in statistical learning
by successively taking four different views illustrated by concrete methods and
applications.

The focus of Subsection 3.2 is on added predictive value of high-dimensional
(omics) predictors to low-dimensional (clinical) predictors. This problem relates
to the relative importance of groups of predictors. In simple (intentionally vague)
words, the question is “is group B interesting given that I already have group
A ?”. We will see that this question is actually multifaceted, hence the vague for-
mulation at this stage. Subsection 3.3 also addresses the relative importance of
predictors in the context of supervised learning, but from a completely different
point of view. The focus is not on groups, but on individual predictors, that are
ranked according to their relevance for prediction in the context of recursive par-
titioning methods. Subsection 3.4 addresses the problem of extreme values that
may affect the assessment of the importance of predictors. Finally, Subsection
3.5 introduces a future research project on the selection of very small subsets of
predictors for clinical applications.

3.2 Added predictive value of high-dimensional data

to low-dimensional clinical data

This subsection first gives an overview of the problem of added predictive value
and its validation, following the lines of the recently published synthesis article
by Boulesteix and Sauerbrei (2011).

Overview

While omics data such as microarray gene expression data have been used for
disease outcome prediction or diagnosis purposes for more than ten years in
biomedical research, the question of the added predictive value of such data
given that classical clinical predictors are already available has long been under-
considered in the bioinformatics literature. This issue can be summarized as
follows. For a given prediction problem (for example tumor subtype diagnosis or
long-term outcome prediction), two types of predictors are considered. On the
one hand, conventional clinical predictors such as, e.g. age, sex, disease duration
or tumor stage are available as potential predictors. They have often been exten-
sively investigated and validated in previous studies. On the other hand, we have
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omics predictors which are generally much more difficult to measure and collect
than conventional clinical predictors that are of variable utility and often not
well-established. In the context of translational biomedical research, biomedical
scientists are often interested in the added predictive value of such predictors
over classical clinical predictors. Clinical predictors may be given as a list of in-
dividual factors or in form of a well-established index such as the International
Prognostic Index (IPI) for lymphoma or the Nottingham Prognostic Index (NPI)
for breast cancer. Here we do not distinguish between the case of individual cli-
nical predictors and the case of an aggregated index. From a statistical point of
view, an aggregated index can be seen as a clinical predictor.

Strategies to derive combined prediction models

Prediction models combining clinical with omics data are important to assess
the added predictive value of omics predictors. That is because some methods
for assessing added predictive value are based on the comparison of the accuracy
of prediction models with and without omics predictors. However, the concept of
combined models is not clearly defined and different strategies have been adopted
in the literature.

Strategy 1 (“naive”)
The perhaps most naive approach consists in building a combined prediction
model by treating clinical and omics predictors in the same way. This approach
is very general. It can be applied to any prediction method that can handle
predictors of the considered types, for instance a mixture of continuous omics
predictors and categorical clinical predictors. In this approach, individual clinical
predictors may “get lost” within the numerous omics predictors and thus not be
fully exploited – especially when clinical information is available in form of a
single aggregated score. If the clinical predictors have good predictive value,
such naive prediction models are expected to underestimate the accuracy of
combined models. The estimated added predictive value then tends to be small
– not because the omics predictors are bad but because the combined rule does
not fully exploit the clinical predictors (that are lost within a large amount of
noise).

Strategy 2 (“residuals”)
The other extreme strategy consists in deriving a fixed clinical prediction mo-
del, for instance using logistic regression or Cox regression. The resulting linear
predictor is then considered as an offset and updated using omics predictors,
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for instance via lasso regression (Tibshirani, 1996) or boosting regression (Bühl-
mann and Hothorn, 2007). This approach yields a linear predictor in which the
coefficients of the clinical predictors are not affected by the omics predictors. It
is adequate to test the added predictive value (Boulesteix and Hothorn, 2010)
since the focus is here on the residual variation of the outcome. However, it may
be sub-optimal in terms of prediction accuracy. Depending on the correlation
between clinical and omics predictors, accuracy may be improved by adapting
the coefficients of the clinical predictors (Binder and Schumacher, 2008).

Strategy 3 (“favoring”)
An intermediate strategy between strategies 1 and 2 is to fit a prediction model
to clinical and omics predictors simultaneously while somehow “favoring” the cli-
nical predictors, since they are more or less “established” prognostic factors. A
comparative study of some of these approaches is given in Bovelstad et al. (2009)
in the context of survival prediction. For instance, clinical predictors might be
favored in terms of prior in Bayesian settings or through a different penalty in
penalized regression. The R package penalized (Goeman, 2010) provides an
implementation of L1 and L2 penalized regression with so-called unpenalized co-
efficients. Such methods, in particular L2 penalized regression, have been shown
to perform well in terms of prediction in a comparative study on survival pre-
diction from combined models (Bovelstad et al., 2009). In the same vein, the
CoxBoost approach (Binder and Schumacher, 2008) forces clinical predictors
into the prediction model.

Strategy 3 better exploits the predictive potential of clinical predictors than
Strategy 1, since they are “favored” in the model building process. In contrast to
strategy 2, however, the influence of clinical predictors in the prediction model is
affected by omics predictors. A critical question is how much clinical predictors
are/should be favored. Obviously, that should depend on clinical knowledge. It is
difficult to give clear recommendations on this heterogeneous family of methods.
If clinical predictors are much favored, Strategy 3 is similar to Strategy 2 and
the prediction accuracy of the combined model is possibly sub-optimal. If they
are not enough favored, however, Strategy 3 has the same pitfall as Strategy 1.

Strategy 4 (“dimension reduction”)
Dimension reduction approaches constitute an important special case of methods
favoring clinical predictors. We are considering them separately here. They in-
clude methods like the PLS+RF procedure (standing for Partial Least Squares
followed by Random Forest) (Boulesteix et al., 2008a) discussed in further details
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in Subsection 3.2 or the supervised principal component approach (Bair and Tib-
shirani, 2004), that are all based on two successive steps. The omics predictors
are first summarized in form of new components in a dimension reduction step.
A prediction rule including these new components and the clinical predictors as
covariates is then built using, e.g. the classical Cox model (Bovelstad et al., 2009)
or random forests (Boulesteix et al., 2008a). A critical aspect of these methods
is over-fitting that should be avoided while constructing the new components.
For instance, over-fitting can be avoided through a pre-validation procedure ap-
plied to the dimension reduction step (Boulesteix et al., 2008a; Tibshirani et al.,
2002). Otherwise, the new components are likely to be strongly correlated with
the outcome even in the case of non-informative omics predictors, and thus yield
sub-optimal combined models.

Validation of added predictive value using an independent data set

Validation of prediction models using independent data is important from a cli-
nical point of view, because it measures the accuracy of the prediction model
based on a possibly different patient population and thus assesses its generali-
zability. Model calibration may be required in this context (van Houwelingen,
2000). Good discrimination in new data is an important pre-requisite for a good
prediction model. In the context of translational research, the validation of added
predictive value is perhaps even more important than the validation of the pre-
diction accuracy of the prediction model. Some approaches have been proposed
for assessing added predictive value based on a single training data while avoi-
ding overfitting problems. In this subsection, however, we address the assessment
of added predictive value based on independent validation data. Note that, from
a technical point of view, an independent validation data set can be generated
artificially from a large data set by random splitting. Compared to data from
a new setting (external data) this internal validation approach has disadvan-
tages. External validation is a more stringent procedure necessary for evaluating
whether the predictive model will generalize to populations other than the one
on which it was developed. In the following we review/present four approaches
(A,B,C,D) for the assessment the added predictive value of omics predictors in
a validation data set.

Approach A
A first possible approach (denoted as “approach A” in the following) is to fit two
prediction models based on the training data : a clinical prediction model and a
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combined prediction model. Note that the combined prediction model should be
fitted using strategies 2, 3 or 4. Otherwise the results cannot be correctly inter-
preted. The two models are then applied to make a prediction for the observations
from the validation data set, and the predicted and true outcomes are compared
for both models. Depending on the type of outcome (right-censored time-to-event
or class) and on the point of view of the researcher, different assessment crite-
ria are available. For time-to-event outcomes the (integrated) Brier-score and
related methods such as prediction error curves (Graf et al., 1999; Gerds and
Schumacher, 2006) are popular measures, but other may also be used depending
on the main focus of the study. The problem of the choice of a suitable measure
to assess the added value is similar for other approaches like approach D dis-
cussed below, that is also based on the accuracy of prediction models. For class
prediction we can compute, e.g., the specificity, the sensitivity or the error rate
of the two prediction models and compare them using standard statistical tests.

Approach B
In some cases, however, prediction models resulting from the training phase can-
not be directly applied to the validation data. For instance, this may be the
case if the training data set was collected within a case-control design while the
validation data set stems from a population study with a (much) smaller percen-
tage of cases. The probabilities output by the prediction model from the training
phase do not make sense for the validation data set. In this case, re-calibration
may be considered. Another option is to validate the discriminative ability of the
score underlying the prediction model rather than the prediction model itself.
A perhaps more characteristic example for which it makes sense to consider the
discriminative ability instead of the prediction is the case of omics predictors
that are measured at a different scale in the training and validation data sets.
For instance, gene expression may have been measured using microarrays in the
training set but using the low-throughput reverse transcription quantitative po-
lymerase chain reaction (RT-PCR) technique in the validation set. The unit of
measurement is then not the same for the two data sets. It thus makes no sense
to apply the model coefficients derived from the training set to the validation
set. In this case, it may be useful to look at the values of the score in the va-
lidation data and its association with the outcome (“approach B”) rather than
at the accuracy of the prediction model. One then needs criteria to assess and
compare the scores underlying the prediction models instead of the prediction
models themselves. ROC curves including tests of equality of the area under the
curve (AUC) or the c-index can be considered in the case of class prediction. For



Contents 39

survival analysis the association between the two scores and the outcome can be
assessed using Cox regression, for instance based on quantile survival curves or
other measures of discriminative ability.

Approach C
Approaches A and B are not widely used in practice, probably because combined
prediction models and combined scores are tricky and not yet well-established.
Moreover, practitioners often prefer to establish their score in form of a omics
score that does not involve clinical predictors. Last but not least, the required
clinical predictors are sometimes not available for the training data. The two
other approaches we are reviewing here are devoted to procedures that do not
necessitate the use of combined scores. The training phase outputs solely a omics
score whose added predictive value is then determined in the validation data set,
thus taking into account the clinical predictors of the validation data.

This omics score may have been constructed while taking the clinical predictors
of the training data into account or not. The SuperPC approach (Bair and Tib-
shirani, 2004) is an example of method deriving a omics score while taking the
clinical predictors into account. The idea is to derive the omics score by applying
principal component analysis to predictors that are correlated with the outcome
in the training data after adjustment for clinical predictors (Bovelstad et al.,
2009). No matter how the omics score is derived, we assume that it can be com-
puted for all observations from the validation data set. It is in a way considered
as a “new predictor”.

The most natural way to assess the score’s association with the outcome while
adjusting for clinical predictors is to fit a prediction model based on the valida-
tion data using the omics score as well as the clinical predictors as predictors
(“approach C”). One can then perform a suitable test to check whether the re-
gression coefficient of the score differs significantly from zero. Since the score
does not overfit the validation data set, this approach is unbiased in the sense
that it does not systematically over-estimate the added predictive value of the
omics predictors. It has been widely used in prognostic studies involving high-
dimensional omics data (Metzeler et al., 2008; Yao et al., 2008).

However, approach C tells nothing about the predictive value in terms of pre-
diction error. Furthermore, p-values get smaller with increasing sample size –
independently of the gained prediction accuracy. As stated by Altman and Roys-
ton (2000) “usefulness is determined by how well a model works in practice, not
by how many zeros there are in the associated p-values”. In other words, small



40

p-values may be observed even if the gained prediction accuracy is poor. For a
binary outcome Pepe et al. (2004) illustrate that in the case of binary classifi-
cation the odds ratio of a binary marker has to be extremely high (e.g. 10 or
more) in order to improve the performance of a classification rule substantially.
Even a “large” odds ratio, e.g. 3, does not give sufficient strength for a suitable
classification tool. They also discuss this issue in the context of the added value
of a marker.

Approach D
Approach D is similar to approach C, but it consists in comparing the prediction
accuracy of prediction models with and without omics score via cross-validation
or related resampling methods rather than via significance testing. Therefore
it addresses the important pitfall of approach C which was based on p-values
only. Note that these prediction models can be constructed via logistic or Cox
regression or by any other model building approach. Like in approach C, the
omics score is considered as a new predictor. While approach C assesses this new
predictor based on the p-value obtained in a multivariate regression, approach D
explicitly evaluates the gain of accuracy yielded by the new predictor by cross-
validation. More precisely, the validation data are divided into a number k of
cross-validation folds, for instance k = 10. In the kth iteration, the kth fold is
excluded from the data and two prediction models are fitted to the remaining
k − 1 folds : one model with clinical predictors only and one model with both
the score and the clinical predictors. The two models are applied to the kth fold
and evaluated based on a suitable criterion like the Brier-score (Graf et al., 1999;
Gerds and Schumacher, 2006) (for both survival analysis and class prediction),
the error rate or the AUC (for class prediction only). Approach D is used in a
paper by Herold et al. (2011) on the prediction of leukemia outcome.

Further variants
Different variants of approaches A, B, C and D may also be of interest in particu-
lar situations. For example, they may be applied in subgroups defined by clinical
predictors, hence implicitly accounting for interaction effects between omics and
clinical predictors. They can also be applied to fixed classical clinical scores al-
ready described in the literature instead of clinical scores fitted from the data.
On the whole, a multitude of methods are conceivable and sensible, but they are
often not described adequately in medical literature, and often even not used
adequately. Furthermore, there has been no study on the respective behavior
and merits of these methods. We are trying to fill this gap in a current project.
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PLS-RF combined classifier based on PLS dimension reduction and
random forests

The PLS-RF proposed by Boulesteix et al. (2008b) is one of the methods ad-
dressing the construction of combined models via dimension reduction (“strategy
4”) as described in Subsection 3.2. The basic idea is to summarize omics predic-
tors through Partial Least Squares (PLS) and to build a random forest (Breiman,
2001) using the clinical predictors and the PLS component(s) as predictors. Since
PLS dimension reduction is per se supervised, the constructed PLS are expec-
ted to be strongly correlated with the response – even in the absence of true
association between response and omics predictors ! This approach thus tends
to over-evaluate the relative importance of omics predictors for the prediction
problem.

To avoid this systematic bias, we suggest in Boulesteix et al. (2008b) to “pre-
validate” the PLS components, i.e. to compute them within cross-validation. The
data are first partitioned into non-overlapping subsets. At each cross-validation
iteration, one of the subsets is excluded and PLS dimension reduction is perfor-
med on the rest of the data, considered as training data for this iteration. The
PLS components are then computed for the excluded subset using the weights de-
rived from the training data and denoted as pre-validated PLS components. Pre-
validated PLS components are computed in the same way for all cross-validation
iterations, i.e. for all observations in the data set. Finally, these pre-validated
PLS components are used to build the random forest in place of the original
(overfitting) PLS components.

The principle of pre-validation originally proposed outside the context of di-
mension reduction by Tibshirani and Efron (2002) can be virtually applied to
any dimension reduction method and could benefit to other methods related to
strategy 4 beyond the particular case of random forests and PLS.

Globalboosttest : a permutation-based test for added predictive value
of high-dimensional data

In Subsection 3.2 we reviewed methods assessing added predictive value of high-
dimensional omics data based on a validation data set. Methods to assess added
predictive value of high-dimensional omics data based on a single training data
set have also been proposed in the literature. The present subsection outlines one
of these methods, a global testing approach, that was suggested by Boulesteix
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and Hothorn (2010). The general idea of global testing approaches is to test
the coefficients of omics predictors in a generalized linear model based on both
clinical and omics predictors. The linear predictor has the form

η = β0 + β1Z1 + · · ·+ βqZq + β∗1X1 + · · ·+ β∗pXp,

where Z1, . . . , Zq stand for the clinical predictors while X1, . . . , Xp are the omics
predictors. In the considered setting, the number of omics predictors p tends to
be much larger than the number of omics predictors q. In the example of logistic
regression, the linear predictor η is linked to the probabilities of the two classes
Y = 0 and Y = 1 through the logistic function. In Cox regression, the linear
predictor corresponds to the hazard ratio. Global tests test the null-hypothesis

H0 : β∗1 = . . . = β∗p = 0

i.e. that X1, . . . , Xp have no added predictive value in the considered generalized
linear model. The testing procedure described in the paper by Boulesteix and
Hothorn (2010) addresses this hypothesis through a two-step procedure involving
permutations. In the first step of this procedure, a logistic regression is fit to the
clinical predictors Z1, . . . , Zq while ignoring the omics predictors X1, . . . , Xp. In
the second step of the procedure, the linear predictor fitted in the first step is
considered as an offset, and a combined model based on both Z1, . . . , Zq and
X1, . . . , Xp is fitted using a regularized regression technique for n � p data.
Several regularized regression techniques are conceivable for the second step.
Boulesteix and Hothorn (2010) consider boosting regression (see Bühlmann and
Hothorn, 2007, for a review), but possible alternative methods include, e.g., Lasso
regression or L2 penalized regression. After completing the second step, a model
fit criterion (for example the likelihood) is computed for the combined model
consisting of the offset from the first step and a term involving omics predictors.
More details are given in Boulesteix and Hothorn (2010).

The second step is repeated a large number of times (e.g. B = 1000) after permu-
tation of the predictors X1, . . . , Xp, while the clinical predictors are left unchan-
ged and the offset thus also remains unchanged. Strictly speaking, permutation
of the variables X1, . . . , Xp corresponds to the null-hypothesis

H0 : β∗1 = . . . = β∗p = 0 and X1, . . . , Xp ⊥⊥Z1, . . . , Zq.

Hence, if we do not have X1, . . . , Xp ⊥ Z1, . . . , Zq, such a permutation procedure
could in theory yield rejection of the null-hypothesis even if β1 = · · · = βp = 0.
However, in our procedure the variables Z1, . . . , Zq enter the model in form of a
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fixed offset. In a simulation corresponding to the extreme caseX1 = Z1, . . . , X5 =
Z5 with β∗1 = · · · = β∗p = 0, the distribution of the p-value is found to be uniform
– as desired since the omics predictors do not have any added predictive value
in this case.

In various simulation settings, the power of our testing procedure is at least as
good as Goeman’s global test (Goeman et al., 2004, 2005), and superior in the
case of a small number of strong omics predictors. The procedure is implemented
in the publicly available R package globalboosttest. The major inconvenience
of our procedure is the high computation time associated with the permutation
scheme. However, like many permutation-based procedures it is easily paralleli-
zable.

3.3 Bias in decision trees and random forests

While the previous subsection focused on the problem of added predictive of a
high-dimensional block of variables given that other variables are already avai-
lable, the present subsection addresses a completely different issue : the ranking
of single predictors using recursive partitioning methods. The ranking of single
predictors might at first view seem much easier than the assessment of groups
of predictors. Properties of variable importance measures, however, are often
not well-known beyond classical linear models. In particular, variable impor-
tance measures derived from decision trees become increasingly popular in many
scientific fields including “omics” sciences, but a thorough investigation of their
behavior in particular conditions often reveals more or less “hidden problems”.
By “problem”, we mean in a very general sense that in simulations the variable
importance measure does not rank the variables as we would have expected.
More specifically, we address the problem of biases, which we define as follows.
A bias occurs when a particular type of predictor is systematically ranked higher
than another type of predictor – although none of the investigated predictors is
associated with the response.

Decision trees and ensemble methods

Decision trees (Breiman et al., 1984) and random forests (Breiman, 2001) are
attractive methods that become increasingly important in supervised learning
applications. An advantage of random forests is that they yield, in addition to



44

the prediction itself, a measure of variable importance (VIM) for each of the
involved predictors. In contrast to standard measures of variable importance
output by classical methods like linear models, random forest VIMs are not
subject to particular assumptions, they may capture non-linear relationships
between predictors and response, and they can be computed even with highly
correlated n � p data. In the eyes of some biomedical scientists, a random
forest resembles a “magic blackbox” returning valid results whatever type of
data you give them. Things are not so simple, however. Even though random
forests present major advantages for the analysis of high-dimensional complex
and not well-characterized data, there are still many open questions regarding
their behavior in non-standard and even in standard settings. Examples are
presented in the rest of this subsection.

Bias and number of candidate splittings in predictors in decision trees

The first and perhaps most obvious problem of standard decision trees is their
bias in favor of predictors with more potential splits. Before each splitting, a
standard tree as defined in the seminal book by Breiman et al. (1984) considers all
possible splits of all predictors, and selects the predictor and the split yielding the
best value of a particular splitting criterion. In the case of a binary response and
trees with binary splits, the most widely used criterion is the so-called Decrease
of Gini Impurity (DGI), which can be shown to be equivalent to the chi-square
statistic in terms of predictor ranking (Grabmeier and Lambe, 2007).

Imagine we want to predict a binary disease status based on two predictors : “sex”
and “month of birth”. The binary predictor “sex” is obviously more likely to be
associated with the disease status than the predictor “month of birth”, because
many diseases affect more men than women or conversely. In a small data set,
however, the nominally scaled predictor “month of birth” might be more likely
to yield a good split by chance. A nominally scaled predictor with as many as 12
categories yields 212− 2 potential splits ! Obviously, the multiplicity of potential
splits advantages this predictor in the sense that, under the null-hypothesis of
no association between predictors and response, it is much more likely to get
selected and to be used for splitting than a predictor with less potential splits.

There are various ways to cope with this problem. In the case outlined above, an
obvious solution would be to consider a single global χ2 test for k× 2 instead of
several χ2 tests for 2× 2 tables. This approach considers the predictors globally
instead of examining all the possible splits of the predictors successively. Another
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approach is to examine all the possible splits successively and select the best split
for each predictor, but to address the resulting multiple testing issue by adjusting
the splitting criterion within each predictor to take into account the fact that
the split is selected optimally among several possible splits.

For the sake of clarity, we assume from now on that the chosen splitting criterion
has to be maximized, i.e. a higher value of the criterion corresponds to a better
split. Adjustment can be done based on the distribution of the maximally selected
criterion under the null hypothesis of independence between the response and
the predictor. The original splitting criterion is then replaced by the “probability
that the maximally selected criterion exceeds the observed value under the null-
hypothesis of independence between the response and the predictor”.

Procedures to derive the exact distribution of maximally selected chi-square sta-
tistics
This probability, however, may be difficult to derive. Enumeration-based me-
thods rapidly become intractable with increasing sample size. Permutation-based
methods are also time consuming, especially if one wants to compute small p-
values precisely. Asymptotic methods can be applied to large samples only, a
condition that is obviously not fulfilled in classification trees involving small
leaves at the bottom of the tree. This motivated the development of compu-
tationally efficient procedures for deriving the exact distribution of maximally
selected chi-square statistics under the null hypothesis of independence between
response class and predictor.

The twin papers Boulesteix (2006a) and Boulesteix (2006b) suggest such proce-
dures that can be applied to the case of a binary response class and a categorical
predictor with K categories. The paper Boulesteix (2006b) addresses the easier
case of an ordinally scaled predictor, i.e. the K categories are naturally orde-
red. In this case, the suggested method to derive the exact distribution of the
maximally selected chi-square statistic can be seen as a generalization of Koziol’s
method (Koziol, 1991). The other paper (Boulesteix, 2006a) is itself a generali-
zation of the method for ordinal predictors and, roughly speaking, considers all
possible orderings of the categories successively. Both procedures are conditional
in the sense that the distribution is computed conditionally on the marginal fre-
quencies of the binary response and ordinal/nominal predictor. They are both
based on combinatorial considerations.

In the same vein, a method for deriving the asymptotical distribution of the
maximally selected chi-square statistic in the case of two interacting ordinal
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predictors is presented in Boulesteix et al. (2007). In particular, this method can
be applied to the assessment of SNP-SNP interactions in the context of genetic
association studies with a binary outcome.

The method for ordinal predictors (Boulesteix, 2006b) can also be applied to
metric predictors with ties. In fact, metric predictors with ties are treated in
the same way as ordinal predictors in decision trees. In particular, they both
have strictly less than n− 1 possible cutpoints, in contrast to metric predictors
without ties that have exactly n− 1 possible cutpoints.

The case of missing values
Metric predictors without ties, which are very common in omics data analysis,
have the advantage that they all have the same number (n − 1) of possible
cutpoints. This is an advantage in terms of the variable selection bias outlined
above : none of the candidate predictors is systematically favored. In the case of
missing values in the predictors, however, things get more complicated. On the
one hand, predictors with many missing values yield less possible cutpoints, thus
reducing the chance to get a good cutpoint by chance. This effect tends to favor
predictors without missing values compared to predictors with many missing
values. On the other hand, the splitting criterion (for instance the chi-square
statistic) has an increased variance in the case of missing values because of the
reduced sample size. This increased variance tends to increase the maximal value
of the criterion over the possible cutpoints.

Hence, we face two contradicting effects : while the “multiple comparisons effect”
tends to favor predictors with few missing values, the “variance effect” tends to
favor predictors with many missing values. All in all, simulations presented in
Strobl et al. (2007b) show that predictors with many missing values are selected
much more often, suggesting that the variance effect strongly dominates the mul-
tiple comparisons effect. Note that this difference in variable selection frequency
is observed even for predictors with values missing completely at random. This
is in contrast with most properties on missing values with classical statistical
methods, where missing values do not produce any bias provided the values are
missing completely at random. Moreover, the identified bias is in the “wrong
direction”. Indeed, all other things being equal one might prefer to select pre-
dictors with less missing values, because their assessment is based on more data
and thus more reliable, and because a high number of many missing values may
reflect, e.g., measurement problems that might also occur for future observations.
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Bias and bootstrap sampling in random forests

To address the variable selection bias discussed in the previous subsection, Ho-
thorn et al. (2006) propose a new class of random forests based on unbiased
criteria. Describing the whole procedure in detail would go beyond the scope of
this subsection. Let us just say that, at each split, the splitting predictor is selec-
ted according to the probability that the maximal criterion over the candidate
splits exceeds the observed value under the null-hypothesis of no association to
the response. The predictor with the smallest probability is selected, and the
best split based on this predictor is used for splitting. This procedure is un-
biased in the sense outlined above. Under the null-hypothesis, predictors with
many categories do not have more chance to get selected that predictors with
few categories.

However, simulations presented in Strobl et al. (2007a) show that, against their
expectations, predictors with many categories are selected more often for split-
ting in random forests and receive higher Gini variable importances than pre-
dictors with few categories even if none of the predictors is associated with the
response. Further simulations show that this systematic bias in favor of predic-
tors with many categories can be removed by constructing the trees based on
subsamples of the original data set rather than on bootstrap samples. In other
words, the bias disappears if we draw the data without replacement instead of
with replacement. Since there are to our knowledge no inconveniences in the use
of subsamples in this context, we consequently propose to always construct ran-
dom forest trees based on subsamples. In a future research project, I intend to
investigate the “bootstrap bias” from a more general point of view independently
of the random forest application.

Bias in random forests variable importance favoring variables with
approximately equally sized categories

Random forests have recently grown to a standard statistical analysis tool in
genetics. They are used in many genetic studies to rank candidate single nucleo-
tide polymorphisms (SNPs) with respect to their association with a disease or
trait of interest via the variable importance measures (VIM), or to investigate
the prediction power of genetic data while possibly taking into account complex
non-linear patterns. As outlined in Subsection 3.3, the Gini VIM is biased in
favor of categorical variables with more categories (Strobl et al., 2007a). In the
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context of genetic association studies, some authors argue that this kind of bias is
not relevant, because most SNPs - if not all - have three categories (“AA”, “Aa”
and “aa”). Further, Calle and Urrea (2011) point out that the Gini VIM shows
better stability than the permutation VIM in resampling analyses and conse-
quently recommend the use of the Gini VIM. However, in a subsequent study on
the stability of VIMs, Nicodemus (2011) shows that the higher stability of Gini
VIM compared to permutation VIM may be due to the fact that the Gini VIM
is biased in favor of SNPs with high minor allele frequency (MAF).

However, the main focus of Nicodemus’ study is not the bias in favor of large
MAFs but rather the stability, performance and behavior of VIMs in various
settings. In a recent paper (Boulesteix et al., 2011a), we present a study with the
three following goals : 1) to assess the bias in favor of large MAFs quantitatively,
independently of stability issues, for different variants of random forests and
VIMs, 2) to highlight the mechanisms leading to this bias, 3) to summarize the
known properties of random forest variable importance measures in the context
of SNP data analysis and to make recommendations regarding the choice of the
random forest variant.

3.4 Extreme values and their influence

Omics data are known to include many outlying values that may considerably
affect the results of high-level analyses, but this problem has surprisingly not
focused much attention in the literature. It is the subject of the paper Boulesteix
et al. (2011b), which is summarized in this section. In the microarray literature,
the term “outlier” most often refers to outlying arrays. In the context of class
prediction, mislabeled arrays are a special type of outliers. Such mislabeled arrays
can be seen as outliers with respect to their class and can often be easily detected
in the context of prediction, since they are usually consistently misclassified by
standard classification algorithms.

The problem of extreme values in the predictors is a different one, and probably
more difficult to handle than outlying samples in high-dimensional settings. In
the context of differential gene expression, a few methods have been proposed
that allow to identify genes with extreme values. For instance, Tibshirani and
Hastie (2007) suggest the related “outlier sum” (OS) statistic for identifying
genes with extreme values. The focus of these procedures is on the identification
of genes that have several extreme values in one of the two groups (the cancer
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group in their example), in the hope that these extreme values form a biologically
interesting subgroup.

While subgroups are often assumed to be “biologically interesting”, single ex-
treme values may rather be the consequence of undesired events such as mea-
surement error, technical errors in the lab, or the particular characteristics of a
single patient that are not relevant to the disease. The standard traditional way
to cope with such single outliers in multivariate analyses is to detect them and
put them aside before performing further analyses, as already recommended by
Edgeworth (1887) in the context of least squares regression : “The method of least
squares is seen to be our best course when we have thrown overboard a certain
portion of our data – a sort of sacrifice which has often to be made by those who
sail upon the stormy seas of Probability”. The problem is that, in the context of
high-dimensional data analysis, it is most often impossible to “throw overboard”
all the observations that have an extreme value for at least one feature. Doing
that, we would eliminate too many if not all observations.

Robust statistical procedures form the second main family of methods hand-
ling extreme values, as summarized by Rousseeuw and Leroy (2003) in low-
dimensional settings. Many statistical methods can be adapted to achieve ro-
bustness against extreme values. However general agreement and clear guidance
are still missing. The field is still in its infancy as far as high-dimensional data
are concerned. A further problem is that robust methods have then to be used
at all stages of the analysis, i.e. we would have to use, say, a robust t-statistic for
differential gene expression analysis, a robust prediction method for multivariate
model building, a robust method for the estimation of correlation graphs, etc.
While it may be easy to compute a robust t-statistic, methods addressing the
other issues are far less developed.

In Boulesteix et al. (2011b) we suggest to apply a very simple logistic-like trans-
formation to each feature and to compare the results of statistical analyses be-
fore and after the transformation. This transformation was originally proposed
by Royston and Sauerbrei (2007) to smoothly “switch off” extreme values in
the context of regression with fractional polynomials. If xij denotes the value of
the jth predictor for the ith individual, the transformed version x∗ij of xij (for
j = 1, . . . , p) is given as

x∗ij =
[
ln
(

Φ(zij) + ε

1− Φ(zij) + ε

)
+ ε∗

]
/(2ε∗), (3.1)

where Φ stands for the standard normal cumulative distribution function, zij
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is simply the standardized form of xij (i.e. zij = (xij − xj)/sj , with xj and sj

denoting the sample average and standard deviation of Xj , respectively), ε is a
parameter, and ε∗ = ln[(1 + ε)/ε]. Royston and Sauerbrei (2007) recommend the
choice ε = 0.01.

Let us consider the example of a ranking in a two-group setting, e.g. differential
expression analysis using the t-statistic. In our analyses using nine real microar-
ray data sets, we first compute the ranking of the features before transformation,
then transform the data and compute the ranking again. Features showing a high
discrepancy between the rankings before and after the transformation are typi-
cally those with extreme values. We find features with such outlying values in
many of the investigated data sets. The discrepancy between the results before
and after the transformation is sometimes dramatic, especially in our analyses
implementing multivariate model selection. To sum up, we feel that outlying va-
lues probably deserve more attention than they usually receive during statistical
analyses. Moreover, the standard pre-processing techniques that we use in our
study (RMA, VSN, GC-RMA and MAS5) produce data sets that still contain
extreme values with strong influence on the results of statistical analyses.

Our somewhat “naive approach” identifies extreme values and proposes a simple
way to handle them. If no extreme value is identified (as measured by the discre-
pancy between the ranks before and after the transformation), it confirms that
extreme values do not seriously influence the univariate ranking of the relevant
features. In many of the data sets of our study (mainly with a survival outcome),
however, extreme values induce the selection of features that would not have been
selected otherwise or conversely lead us to overlook important features. Ignoring
extreme values in statistical analyses can be seen as a simple and common error
(Baggerly and Coombes, 2009). In the context of multivariable analyses diffe-
rences between models with and without the transformation are larger. This will
hardly influence prediction accuracy, but may lead to different interpretations
of the selected models. The specific implications of differences in results have to
be discussed with subject-matter knowledge in mind. Since the transformation
is easy to apply, we propose to use it at least as a sensitivity analysis. This is in
line with the proposal in the original paper (Royston and Sauerbrei, 2007) where
the transformation was developed to improve robustness of fractional polynomial
functions.

Of course, one could argue that extreme values may have biological relevance
and should not be switched off. However, they first have to be identified anyway.
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The transformation with the corresponding rank discrepancy measure can be
used for this purpose. It could be interesting to investigate why the considered
observation has an extreme value for the considered feature. Indeed, in practice
features with extreme values may be particularly interesting as outlined by Wu
(2007). Even for a biomedical expert, it is usually difficult to find out whether
the observed extreme values are “aberrant” irrelevant values or rather indicate
a potentially interesting subgroup. While a group of, say, five similar extreme
values may be worth further investigations, isolated extreme values are less likely
to be biologically important and should definitely not have a strong influence on
the results of statistical analyses. In this context, the proposed transformation
leads to more robust results without completely eliminating the incriminated
observation or feature.

Our aim is not to generally recommend to use transformed data in place of the
original data set. We merely claim that, in the case of biologically uninteresting
extreme values (or if one does not know if they are interesting), it is worth consi-
dering the results obtained from transformed data parallel to the original results.
Statisticians are not expected to say whether the extreme values are interesting
or not. Their role is only to identify extreme values and provide robust analyses
that are not strongly affected by these extreme values. Our transformation can
be useful for both tasks. Note that other transformations may show similar ef-
fects. We consider the transformation of Eq. (3.1) because it is very simple and
appropriate for all types of statistical analyses, and because its usefulness has
already been shown in a different type of multivariate data analysis in the field
of medical statistics.

The particularity of our transformation is its simplicity – with several positive
consequences. Firstly, it is able for new test data collected later. One simply has
to apply the transformation defined by a single equation to the new test obser-
vations with the mean and standard deviation estimates from the training set
used to do the transformation. Secondly, our transformation is not specific to a
particular type of data. While an improved preprocessing variant could perhaps
correctly address extreme values for a special data type, our transformation is
general enough to be directly applied to all types of (metric) predictors including
but not limited to proteomic or metabolomic data. Thirdly, it is also a compu-
tationally secure choice : it does not involve, say, complicated fitting procedures
with potential convergence problems or instable estimation steps. Lastly, it can
be easily implemented in any software tool in a few minutes.
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3.5 Research perspective : “Top-top-ranking” variables

and very sparse models

Omics data often include several thousands of predictors. Out of these thousands
of predictors, a few tens usually focus attention. For example, they are included
in the “top-list” shown in the paper or they are involved in the final decision
function used to perform prediction. As far as the special case of gene expression
microarray data is concerned, most published “signatures” include from 20 to
100 gene expression levels as predictors, for example the well-known 70-gene
signature for prediction of breast cancer outcome (van’t Veer et al., 2002), which
belongs to the few microarray-based signatures already commercialized and used
in clinical practice.

Considering the total number of candidate predictors included in the data set,
a 70-gene signature is the result of a dramatic variable selection. However, 70 is
still a large number in the perspective of clinical applications, because it means
that chips would have to be used routinely in clinical practice. Chips are ex-
pensive and often difficult to use. That is why practitioners would prefer a very
sparse signature involving a handful of predictors that can then be measured
using more simple low-throughput techniques based, roughly speaking, on “test
tube and pipet” experiments. From a statistical point of view, this implies a
further reduction of complexity. This problem is surprisingly ignored by most
methodological papers on high-dimensional prediction, although it is suspected
that very few predictors are actually good for prediction (Haibe-Kains et al.,
2008). The lack of stability of the derived models or“top-lists” of predictors also
suggests that few predictors are really important. However, it is still unclear
how one should reduce the complexity of a signature from, say, 50 predictors (as
commonly selected by standard methods like lasso regression) to 5 or 10. Few
procedures have been proposed in this context.

This project is connected to many projects presented in the rest of this synthesis.
It is related to the problem of stability, because a possible approach is to focus
on stable predictors that are selected consistently over resampling iterations.
It is also related to the problem of added predicted value, because we do not
want to exclude omics predictors that have much added predicted value. It is
related to extreme values, because one might for instance exclude predictors
that are in the top-list just because of a single extreme value. Finally, it is
also related to over-optimism, because the sequential adaptation of the set of
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predictors to a particular data set can be seen as a form of data dredging. It
makes a fair performance evaluation non-trivial. All steps of model selection
should be performed using learning data only, implying much computational
effort in resampling settings.
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Chapitre 4

Concluding remarks

4.1 New methods versus other projects

During my six post-doctoral years I developed several “new methods” but I also
performed studies on existing methods to e.g. compare them, assess their bias,
determine how they should (or should not) be used. I found both types of projects
exciting. New methods are necessary to answer new arising questions or to better
answer well-known questions. I think, however, that studies of the second type
are also important in biostatistics research to ensure that previously proposed
methods work as expected in different situations and that emerging “standard
practice rules” are the result of well-designed studies performed by statisticians.

Good comparison studies contain “new results” in the sense that they yield new
knowledge, say, that method A is better than method B. In a broad sense, review
articles contain new results in the sense that they establish connections between
related approaches and bring structure in a previously less structured knowledge
field. Studies showing the pitfalls of a methodology (such as the bias of a widely
used importance measure) contain new results in the sense that they highlight
previously unknown aspects of the method that potentially affect the way it
should be used or interpreted. In my opinion, these three types of studies are an
important part of methodological biostatistics research.

One might of course argue that we can also do both within the same project,
for instance comparing/reviewing existing methods and suggesting a new one.
Indeed, in practice new methods are usually compared to a few existing methods
in order to establish their superiority. In my opinion, such comparison studies
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are extremely important for illustrative purposes, but should strictly speaking
not be considered as comparison studies. In the context of supervised classifica-
tion with high-dimensional data, hundreds of these comparison studies can be
found in the literature, and they almost all suggest the superiority of different
methods – namely the considered new method introduced in the paper. This ex-
treme example illustrates the limitation of comparison studies included in papers
introducing new methods. This limitation also affects other fields of statistical
research, even if not as dramatically. Over-optimism in the reporting of statisti-
cal learning research has many sources. Some of them can be addressed through
the application of obvious statistical principles and good practice rules. Others
are much more difficult to address. For example, if an implementation problem
occurs with the competing approaches and slightly worsens their results, resear-
chers often tend to spontaneously accept these inferior results. Conversely, they
would probably obstinately look for the error if such problems occur with their
new algorithm. All in all, I believe that additional comparison studies focusing
on the comparison itself (and not on a new method) may be very useful to the
scientific community.

The question “why not both ?” could also be asked with respect to studies sho-
wing the pitfall of a method. Why not also simultaneously propose a new method
as a solution ? Of course, finding a solution should be the ultimate goal. Howe-
ver, awareness of the problem is an important step towards the solution. In
my opinion, showing an important problem without simultaneously suggesting
a solution at the same time should not always be considered as a failure. Let
us make a keen comparison with the fields of epidemiology and drug research.
In epidemiological research, scientists establish links between diseases and risk
factors. Even if they often do not directly suggest concrete interventional proce-
dures or drugs to “make the world better” (i.e. to improve the outcome of the
patients), epidemiological studies are considered as an extremely important part
of biomedical research. Transferring this idea to the statistical research, it would
mean that studies that do not suggest any “intervention” (i.e. a new method)
could/should also be considered as valuable contributions to “make the world
better” (i.e., roughly speaking, to make results of statistical analyses closer to
the truth).



Contents 57

4.2 Dirty details ?

My experience as a statistical consultant for medical doctors also convinced me
that small “dirty problems” often affect the conclusions of a study at least as
much as statistical modelling issues. Statistical research traditionally focuses on
modelling issues and not on dirty problems. By “dirty problems”, I mean for
instance :

– the reporting strategy to adopt when two statistical methods yield different
methods (as discussed in Section 3.3),

– the choice of crucial parameters for which there exists no systematic procedure
or a highly variable procedure such as cross-validation,

– the influence of the pre-processing of the data including scaling, dichotomiza-
tion of quantitative predictors, normalization (in the case of high-throughput
omics data), handling of missing values, etc,

– the influence of extreme values,
– the strategy to handle a discrepancy between “what the data say” and “what

the biomedical community thinks” such that both components benefit from
each other,

– the fact that two different persons may obtain different results for the same
analysis, because this analysis is highly sensitive to a particular argument that
is often not given any attention,

– the discrepancy between different implementations of the same statistical mo-
delling approach,

and many others. These problems are daily faced by most statisticians working
with real data in cooperation with non-statisticians. However, there are often
considered as “uninteresting details” by methodological researchers and igno-
red/underconsidered in many publications. In my opinion, these dirty details
deserve more attention in methodological research. Statistical consultants, who
can roughly be considered as the end users of the new methods developed by
methodological researchers, should not be left alone with these dirty problems.

The needed attention can be given at different levels. Dirty problems may be per
se important topics of methodological research. For instance, one may investigate
whether pre-processing the whole data set before splitting it into training and
test data has an impact on the assessment of prediction models and, if yes,
develop adequate methods to handle this problem. Dirty details may also be
better acknowledged in methodological projects on new methods by giving more
details on the choice of parameters, on the considered method variant, on pre-
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processing, and by specifically pointing to potential dirty details. In particular,
this implies that authors partly give up the “brave new world” writing style and
that reviewers are disposed to this change.

Last but not least, an important step in this direction is the publication of repro-
ducible codes implementing the analyses presented in a paper. Two important
biometric journals (Biostatistics and Biometrical Journal) have adopted a repro-
ducibility policy and strongly encourage the publication of codes and/or data
together with the article. Reproducible research does not address all dirty pro-
blems sketched above. But at least it allows readers to better understand which
choices have been done by the authors and how the results were produced. It is
a step towards more transparent statistical research. Donoho (2010) states “I of-
ten cannot really be sure what a student or colleague has done from his/her own
presentation, and in fact often his/her description does not agree with my own
understanding of what has been done, once I look carefully at the scripts” and
consequently recommend to work in a reproducible way and to publish codes.
The benefits of reproducibility and concrete strategies to implement it will also
be part of my research topics in the next few years.



Bibliographie

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine,
A., 1999. Broad patterns of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings
of the National Academy of Sciences 96, 6745–6750.

Altman, D. G., Royston, P., 2000. What do we mean by validating a prognostic
model ? Statistics in Medicine 19, 453–73.

Ambroise, C., McLachlan, G. J., 2002. Selection bias in gene extraction in tumour
classification on basis of microarray gene expression data. Proceedings of the
National Academy of Science 99, 6562–6566.

Baggerly, K. A., Coombes, K. R., 2009. Deriving chemosensitivity from cell lines :
Forensic bioinformatics and reproducible research in high-throughput biology.
Annals of Applied Statistics 3, 1309–1334.

Bair, E., Tibshirani, R., 2004. Semi-supervised methods to predict patient sur-
vival from gene expression data. PLoS Biology 2, 0511.

Bengio, Y., Grandvalet, Y., 2004. No unbiased estimator of the variance of k-fold
cross-validation. Journal of Machine Learning Research 5, 1089–1105.

Bernau, C., Augustin, T., Boulesteix, A. L., 2011. Correcting the optimally se-
lected resampling-based error rate : A smooth analytical alternative to nested
cross-validation. Technical Report 105, Department of Statistics, LMU.

Bernau, C., Boulesteix, A. L., 2010. Variable selection and parameter tuning in
high-dimensional prediction. COMPSTAT Proceedings Online.

Binder, H., Schumacher, M., 2008. Adapting prediction error estimates for biased
complexity selection in high-dimensional bootstrap samples. Statistical Appli-
cations in Genetics and Molecular Biology 7, 12.

59



60

Boulesteix, A. L., 2004. PLS dimension reduction for classification with high-
dimensional microarray data. Statistical Applications in Genetics and Mole-
cular Biology 3, Issue 3, Article 33.

Boulesteix, A.-L., 2006a. Maximally selected chi-square statistics and binary
splits of nominal variables. Biometrical Journal 48, 838–848.

Boulesteix, A. L., 2006b. Maximally selected chi-square statistics for ordinal
variables. Biometrical Journal 48, 451–462.

Boulesteix, A. L., 2007. WilcoxCV : An efficient R package for variable selection
in cross-validation. Bioinformatics 23, 1702–1704.

Boulesteix, A. L., 2010. Over-optimism in bioinformatics research. Bioinformatics
26, 437–439.

Boulesteix, A. L., Bender, A., Bermejo, J. L., Strobl, C., 2011a. Random forest
gini importance favors snps with large minor allele frequency. Briefings in
Bioinformatics, doi : 10.1093/bib/bbr053.

Boulesteix, A. L., Guillemot, V., Sauerbrei, W., 2011b. Use of pre-transformation
to cope with extreme values in important candidate features. Biometrical Jour-
nal 53, 673–688.

Boulesteix, A. L., Hothorn, T., 2010. Testing the additional predictive value of
high-dimensional molecular data. BMC Bioinformatics 11, 78.

Boulesteix, A. L., Porzelius, C., Daumer, M., 2008a. Microarray-based classifica-
tion and clinical predictors : On combined classifiers and additional predictive
value. Bioinformatics 24, 1698–1706.

Boulesteix, A. L., Sauerbrei, W., 2011. Added predictive value of high-
throughput molecular data to clinical data, and its validation. Briefings in
Bioinformatics 12, 215–229.

Boulesteix, A. L., Strimmer, K., 2007. Partial least squares : A versatile tool for
the analysis of high-dimensional genomic data. Briefings in Bioinformatics 8,
32–44.

Boulesteix, A. L., Strobl, C., 2009. Optimal classifier selection and negative bias
in error rate estimation : An empirical study on high-dimensional prediction.
BMC Medical Research Methodology 9, 85.



Contents 61

Boulesteix, A. L., Strobl, C., Augustin, T., Daumer, M., 2008b. Evaluating
microarray-based classifiers : an overview. Cancer Informatics 6, 77–97.

Boulesteix, A. L., Strobl, C., Weidinger, S., Wichmann, H. E., Wagenpfeil, S.,
2007. Multiple testing for SNP-SNP interactions. Statistical Applications in
Genetics and Molecular Biology 6, 37.

Bovelstad, H. M., Nygard, S., Borgan, O., 2009. Survival prediction from clinico-
genomic models – a comparative study. BMC Bioinformatics 10, 413.

Braga-Neto, U. M., Dougherty, E. R., 2004. Is cross-validation valid for small-
sample microarray classification. Bioinformatics 20, 374–380.

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., Stone, J. C., 1984. Classification
and Regression Trees. Wadsworth, Monterey, CA.
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