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Résumé

Dans un contexte de test multiple, nous considérons un modèle de mélange semipara-

métrique avec deux composantes. Une composante est supposée connue et correspond

à la distribution des p-valeurs sous hypothèse nulle avec probabilité a priori θ. L’autre

composante f est nonparamétrique et représente la distribution des p-valeurs sous

l’hypothèse alternative. Le problème d’estimer les paramètres θ et f du modèle ap-

paraît dans les procédures de contrôle du taux de faux positifs (“false discovery rate”

ou FDR). Dans la première partie de cette dissertation, nous étudions l’estimation de

la proportion θ. Nous discutons de résultats d’efficacité asymptotique et établissons

que deux cas différents arrivent suivant que f s’annule ou non surtout un intervalle

non-vide. Dans le premier cas (annulation surtout un intervalle), nous présentons des

estimateurs qui convergent à la vitesse paramétrique, calculons la variance asympto-

tique optimale et conjecturons qu’aucun estimateur n’est asymptotiquement efficace

(i.e atteint la variance asymptotique optimale). Dans le deuxième cas, nous prouvons

que le risque quadratique de n’importe quel estimateur ne converge pas à la vitesse

paramétrique. Dans la deuxième partie de la dissertation, nous nous concentrons sur

l’estimation de la composante inconnue nonparamétrique f dans le mélange, en comp-

tant sur un estimateur préliminaire de θ. Nous proposons et étudions les propriétés

asymptotiques de deux estimateurs différents pour cette composante inconnue. Le

premier estimateur est un estimateur à noyau avec poids aléatoires. Nous établissons

une borne supérieure pour son risque quadratique ponctuel, en montrant une vitesse

de convergence nonparamétrique classique sur une classe de Hőlder. Le deuxième es-

timateur est un estimateur du maximum de vraisemblance régularisée. Il est calculé

par un algorithme itératif, pour lequel nous établissons une propriété de décroissance

d’un critère. De plus, ces estimateurs sont utilisés dans une procédure de test multiple

pour estimer le taux local de faux positifs (“local false discovery rate” ou `FDR).

3



Abstract

In a multiple testing context, we consider a semiparametric mixture model with

two components. One component is assumed to be known and corresponds to the

distribution of p-values under the null hypothesis with prior probability θ. The other

component f is nonparametric and stands for the distribution under the alternative

hypothesis. The problem of estimating the parameters θ and f of the model appears

from the false discovery rate control procedures. In the first part of this dissertation,

we study the estimation of the proportion θ. We discuss asymptotic efficiency results

and establish that two different cases occur whether f vanishes on a non-empty

interval or not. In the first case, we exhibit estimators converging at parametric

rate, compute the optimal asymptotic variance and conjecture that no estimator

is asymptotically efficient (i.e. attains the optimal asymptotic variance). In the

second case, we prove that the quadratic risk of any estimator does not converge at

parametric rate. In the second part of the dissertation, we focus on the estimation of

the nonparametric unknown component f in the mixture, relying on a preliminary

estimator of θ. We propose and study the asymptotic properties of two different

estimators for this unknown component. The first estimator is a randomly weighted

kernel estimator. We establish an upper bound for its pointwise quadratic risk,

exhibiting the classical nonparametric rate of convergence over a class of Hőlder

densities. The second estimator is a maximum smoothed likelihood estimator. It is

computed through an iterative algorithm, for which we establish a descent property.

In addition, these estimators are used in a multiple testing procedure in order to

estimate the local false discovery rate.
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Chapter 1

General Introduction

This overview briefly describes the main components of this dissertation, including

multiple testing framework, type I error rate control procedures, FDR estimation

approach, local false discovery rate and semiparametric inference. The last concept

is the central motivation of this dissertation. This introduction borrows some material

from Roquain (2011), Storey (2002, 2004) and van der Vaart (1998, 2002).

Contents
1.1 Multiple testing framework . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Type I error rate control procedures . . . . . . . . . . . . . . . . . . . 11
1.3 The FDR estimation approach . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Local false discovery rate . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Semiparametric inference . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Multiple testing framework

1.1.1 Multiple testing problem

The problem of multiple testing has a long history in the statistics literature. Microarray

analysis [Dudoit and van der Laan, 2008], astrophysics [Meinshausen and Rice, 2006] or neu-

roimaging [Turkheimer et al., 2001] are some areas in which multiple testing problems occur. We

first recall the basic paradigm for single-hypothesis testing. We wish to test a null hypothesis

H0 versus an alternative H1 based on a statistic X. For a given rejection region Γ, we reject H0

when X ∈ Γ and we accept H0 when X /∈ Γ. A type I error occurs when the null hypothesis

(H0) is true but is rejected; while a type II error occurs when the null hypothesis is false but

is accepted. To choose Γ, the acceptable type I error is set at some level α, then all rejection

regions are considered that have a type I error that is less than or equal to α. The one that

has the lowest type II error is chosen. Therefore, the rejection region is sought with respect

8



1.1. MULTIPLE TESTING FRAMEWORK

to controlling the type I error. Precisely, we find a rejection region with nearly optimal power

(power = 1 - type II error) while maintaining the desired α-level type I error.

Now, for multiple-hypothesis testing, the situation becomes much more complicated. For

instance, we test simultaneously n = 10, 000 null hypotheses, of which n0 = 8, 000 are true nulls

(level α = 0.05 for each test). This procedure makes on average n0α = 400 false positives (type

I errors). It seems unsuitable because it is likely to select a lot of false positives. And it becomes

unclear how we should measure the overall error rate. A multiple testing procedure aims at

correcting a priori the level of the single tests in order to obtain the “quantity” of false positives

that is below a nominal level α. The “quantity” of false positives is measured by using global

type I error rates, as for instance the probability to make at least one type I error among all the

hypotheses (family wise error rate, FWER) or the expected proportion of false positives among

all rejected hypotheses (false discovery rate, FDR).

1.1.2 An example of multiple testing

In a microarray experiment, the level expressions of a set of genes are measured under two

different experimental conditions and we aim at finding the genes that are differentially expressed

between the two conditions. For instance, the genes come from tumor cells in the first experimen-

tal condition, while the genes come from healthy cells in the second, the differentially expressed

genes may be involved in the development of this tumor and thus are genes of special interest.

The problem of finding differentially expressed genes can be formalized as a particular case of a

general two-sample multiple testing problem. Let us observe a couple of two independent samples

(Y 1, . . . , Y n1) ∈ Rn×n1 and (Z1, . . . , Zn2) ∈ Rn×n2 ,

where (Y 1, . . . , Y n1) is a family of n1 iid copies of a random vector Y in Rn and (Z1, . . . , Zn2)

is a family of n2 iid copies of a random vector Z in Rn. In the context of microarray data,

Y j
i (resp. Zji ) is the expression level of the i-th gene for the j-th individual of the first (resp.

second) experimental condition. Suppose that Y ∼ N (µ1,Σ1) and Z ∼ N (µ2,Σ2), where µ1 =

(µ11, . . . , µ1n) and µ2 = (µ21, . . . , µ2n) are mean vectors of Rn, Σ1 and Σ2 are diagonal covariance

matrices. The index set {1 ≤ i ≤ n : µ1i 6= µ2i} corresponds to differentially expressed genes.

Then we aim at testing simultaneously n hypotheses

H0,i : ”µ1i = µ2i” against H1,i : ”µ1i 6= µ2i”.

9



1.1. MULTIPLE TESTING FRAMEWORK

The individual test statistic is the classical two-sample t-statistic

Xi =
Y i − Zi

σ̂i

√
1
n1

+ 1
n2

where σ̂2
i =

(n1 − 1)σ̂2
1i + (n2 − 1)σ̂2

2i

n1 + n2 − 2
,

and Y i, σ̂
2
1i (resp. Zi, σ̂

2
2i) are the sample mean and the sample variance of the data {Y j

i }j (resp.

{Zji }j).

1.1.3 P -value and z-value of test

We define the p-value as the probability of observing something as extreme as or more extreme

than the observed test statistic given that the null hypothesis is true. That is, we can consider

the p-value as the minimum probability under the null that our test statistic is in the rejection

region (i.e., the minimum type I error rate) over the set of nested rejection regions containing the

observed test statistic. Formally, we can write the p-value [see Lehmann, 1986], corresponding

to an observed test statistic X = x as

p− value(x) = inf
{Γ:x∈Γ}

{P(X ∈ Γ|H = 0)},

where {Γ : x ∈ Γ} is a set of nested rejection regions that contain the observed test statistic x.

Any p-value is stochastically bounded by a uniform distribution under the null, namely,

P
(
pi(X) ≤ t|H = 0

)
≤ t, for all t ∈ [0, 1]. (1.1)

For example, when the rejection regions Γ are of the forms {X ≥ c}, the p-value of X = x is

p− value(x) = inf
{c:x≥c}

{P(X ≥ c|H = 0)}

= P(X ≥ x|H = 0) = 1−G0(x),

where G0 is the cumulative distribution function (CDF) of test statistic X under null hypothesis.

If the distribution of the statistic Xi is absolutely continuous, (1.1) holds with equality, that is,

the p-values are exactly distributed like a uniform variable in [0, 1] when H0 is true.

Remark 1.1. When we reject the null hypotheses on the basis of p-values, all rejection regions

are of the form [0, γ] for some γ > 0.

Indeed, according to the definition of p-value, for two p-values p1 and p2, the relation p1 ≤ p2

implies that the respective observed statistics x1 and x2 are such that x2 ∈ Γ implies x1 ∈ Γ.

Therefore, whenever p2 is rejected, p1 should also be rejected.

10



1.1. MULTIPLE TESTING FRAMEWORK

We now define a z-value of test as the probit transformation

Z = probit(P ) = Φ−1(P ),

where P is a p-value and Φ is the CDF of the standard normal distribution.

1.1.4 Mixture model in multiple testing setup

Suppose that we are testing n identical hypothesis tests H1, . . . ,Hn with observed statistics

X1, . . . , Xn. The identical tests mean that the same rejection region type is used for each test.

We let Hi = 0 when the null hypothesis i is true and Hi = 1 otherwise. We denote by Ti = T (Xi)

a transformation of test statistic, for example, Ti is p-value Pi, z-value Zi, local false discovery

rate `FDR(Xi) (defined as below) or identical to test statistic Xi. We assume that the nulls

Ti|Hi = 0 and the alternatives Ti|Hi = 1 are identically distributed with respective distribution

functions G0 that is known and G1 that is unknown. Finally we assume that the Hi are Bernoulli

random variables with an unknown probability P(Hi = 0) = θ. The marginal distribution of

each Ti is thus a mixture

G(x) = θG0(x) + (1− θ)G1(x),

and we denote by g = θg0 + (1− θ)g1 the corresponding probability density function (pdf) of Ti

(if it exists). When we assume that the statistics Xi under the null hypotheses are continuous

variables, the p-values under the null hypotheses follow the uniform distribution U([0, 1]) on

interval [0, 1] and the marginal distribution of each p-value is

F (x) = θx+ (1− θ)F1(x), for x ∈ [0, 1],

and we denote the corresponding pdf by f(x) = θ1[0,1](x)+(1−θ)f1(x), where f1 is an unknown

pdf on [0, 1]. If we consider the transformation Ti as z-value Zi, then

G0(x) = PH0(Zi ≤ x) = PH0(Pi ≤ Φ(x)) = Φ(x),

and

G1(x) = PH1(Zi ≤ x) = PH1(Pi ≤ Φ(x)) = F1(Φ(x)).

Thus the pdf of Zi is g(x) = φ(x)[θ + (1 − θ)f1(Φ(x))], for x ∈ R, where φ is the pdf of the

standard normal distribution.

11



1.1. MULTIPLE TESTING FRAMEWORK

1.1.5 Multiple testing procedure

A multiple testing procedure (MTP) provides rejection regions, i.e., sets of values for each Ti

that lead to the decision to reject the corresponding null hypothesis Hi. In other words, a MTP

produces a random subsetR of {1, · · · , n} that the indexes selected correspond to the rejected null

hypotheses. A multiple testing setting includes the p-value family p = {pi, 1 ≤ i ≤ n} ∈ [0, 1]n.

The multiple testing procedure based on p is defined as a set-valued function

R : p = (pi)1≤i≤n ∈ [0, 1]n 7→ R(p) ⊂ {1, · · · , n},

taking as input an element of [0, 1]n and returning a subset of {1, · · · , n}. The indexes selected by

the procedure R(p) correspond to the rejected null hypotheses. When we focus on the case of the

identical tests based on the p-value family, one procedure, called thresholding based procedure,

is of the form R(p) = {1 ≤ i ≤ n : pi ≤ t(p)}, where the threshold t(·) ∈ [0, 1] can depend on the

data.

1.1.6 Type I and II error rates

To measure the quality of a multiple testing procedure, various error rates have been proposed

in the literature. These rates evaluate the importance of the null hypotheses wrongly rejected,

that is the number of false positives (FP). Two error measures that are the most commonly used

in multiple-hypothesis testing are the family wise error rate (FWER) and the false discovery rate

(FDR). Moreover, the false discovery proportion (FDP) is also a widely used type I error. The

definitions of these rates are recalled in the following. First, the outcome of testing n hypotheses

simultaneously can be summarized as indicated in Table 1.1.

Table 1.1: Possible outcomes from testing n hypotheses H1, . . . ,Hn.
Accepts Hi Rejects Hi Total

Hi is true TN FP n0

Hi is false FN TP n1

Total W R n

The family wise error rate (FWER) is defined as the probability to make at least one false

positive among all the hypotheses,

FWER = P(FP ≥ 1).

12



1.2. TYPE I ERROR RATE CONTROL PROCEDURES

The false discovery proportion (FDP) is defined as the proportion of false positives among the

rejected hypotheses,

FDP =
FP

max(R, 1)
.

Let us remark that the FDP is a random variable, it does not define an error rate. Benjamini

and Hochberg [1995] define the false discovery rate (FDR) as the expectation of the FDP,

FDR = E
[ FP

max(R, 1)

]
= E

[FP
R
∣∣R > 0

]
P(R > 0).

They provided sequential p-value methods to control this quantity. FDR offers a much less strict

multiple-testing criterion over FWER and therefore leads to an increase in power. Storey [2003]

proposes to modify FDR so as to obtain a new criterion, the positive FDR (or pFDR) defined

by

pFDR = E
[FP
R
∣∣R > 0

]
and argues that it is conceptually more sound than FDR. Indeed, when controlling FDR at

level α, and positive findings have occured then FDR has really only been controlled at level

α/P(R > 0). This can be quite dangerous, and it is not the case for pFDR. Other similar

measure includes the marginal FDR (mFDR) defined as

mFDR =
E(FP)

E(R)
.

Under weak conditions, Genovese and Wasserman [2002] showed that mFDR = FDR+O(n−1/2)

and Storey [2003] proved that mFDR and pFDR are identical. An analog of FDR in terms of

false negatives (type II errors) is the false nondiscovery rate (FNR), defined as

FNR = E
[ FN

max(W, 1)

]
= E

[FN
W
∣∣W > 0

]
P(W > 0).

Similarly, we define the positive false nondiscovery rate (pFNR) as the conditional expectation

pFNR = E
[FN
W
∣∣W > 0

]
.

1.2 Type I error rate control procedures

A multiple testing control procedure aims at finding a rejection region whose type I error

rate is no larger than a certain level. There is well-defined relationship between two type I error

13



1.2. TYPE I ERROR RATE CONTROL PROCEDURES

rate: the FDR and the FWER. To see this, we write

E
[ FP

max(R, 1)

]
= E

[FP
R
∣∣FP ≥ 1

]
P
[
FP ≥ 1

]
+ 0.P

[
FP = 0

]
≤ P

[
FP ≥ 1

]
,

then the FDR is less than or equal to the FWER. This implies that any procedure that controls

the FWER will also control the FDR. The reverse, however, is not true. That is, control of the

FDR does not generally imply control of the FWER.

1.2.1 FWER control procedures

Hochberg and Tamhane [1987] describe a variety of FWER-controlling methods, based on

cut-off rules for ordered p-values. Westfall and Young [1993] provide resampling-based multiple

testing procedures for controlling the FWER. We only present here some classical procedures

to control the FWER. Bonferroni [1936]’s procedure is perhaps the best-known procedure in

the multiple testing literature. It controls the FWER for arbitrary test statistics joint null

distributions.

Bonferroni [1936]’s procedure. The Bonferroni procedure rejects any null hypothesis Hi

with a p-value less than or equal to the common threshold t(p) = α/n. That is, the set of

rejected null hypotheses is R(p) = {1 ≤ i ≤ n : pi ≤ α/n}. This procedure controls the FWER

under arbitrary conditions. That is,

FWER = P(∃ a false positive) = P
( ⋃
i:H0,i is true

{
pi ≤ t(p)

})
≤

∑
i:H0,i is true

P
(
pi ≤ t(p)

)
≤ n0

α

n
≤ α.

Closely related to Bonferroni [1936]’s procedure is Šidák [1967]’s procedure, which guarantees

control of the FWER for the test statistics distributions that satisfy Šidák’s Inequality. It

rejects any null hypothesis Hi with a p-value less than or equal to the common threshold t(p) =

1 − (1 − α)1/n. Since α/n ≤ 1 − (1 − α)1/n, Šidák [1967]’s procedure is thus more powerful

than Bonferroni [1936]’s one. In other words, using Šidák [1967]’s procedure, we reject a larger

number of hypotheses while controlling the same error rate, which leads to larger power. Besides,

there are some other procedures that intend to control the family wise error rate and they are

more powerful than Bonferroni [1936]’s procedure. Among those procedures, we can recall Holm

[1979]’s procedure and Hochberg [1988]’s procedure.
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1.2.2 FDR control procedures

A common criticism of multiple testing procedures designed to control the FWER is their

lack of power, especially for large-scale testing problems such as those encountered in biomedical

and genomic research. In many situations, control of the FWER can lead to unduly conservative

procedures. In current areas of application of multiple testing procedures, such as gene expression

studies based on microarray experiments, thousands of tests are performed simultaneously and

a fairly large proportion of null hypotheses are expected to be false. In this context, Type I

error rates based on the proportion of false positives among the rejected hypotheses (FDR) may

be more appropriate than error rates based on the absolute number of Type I errors (FWER).

Benjamini and Hochberg [1995] provided a linear step-up procedure (the BH procedure) which

controls the FDR at a certain level α.

A linear step-up procedure (the BH procedure). Consider testing H1, . . . ,Hn based on

the corresponding p-values p1, . . . , pn,

– Step 1: let p(1) ≤ . . . ≤ p(n) be the ordered p-values and denote by H(i) the null hypothesis

corresponding to p(i),

– Step 2: calculate k̂ = max{1 ≤ i ≤ n : p(i) ≤ iα/n},

– Step 3: if k̂ exists then reject all H(i) for i = 1, . . . , k̂, otherwise reject nothing.

Benjamini and Hochberg [1995] prove that this procedure controls the FDR for independent test

statistics. The subsequent article of Benjamini and Yekutieli [2001] establishes FDR control for

test statistics with the positive dependence structure called positive regression dependence from a

subset. Since Benjamini and Hochberg [1995]’s article, many authors have proposed a variety of

multiple testing procedures for controlling the FDR. We first describe an adaptive linear step-up

procedure which is proposed by Benjamini and Hochberg [2000].

An adaptive linear step-up procedure. Note that in fact, the BH procedure controls the

FDR at level θα under independence or positive dependence conditions, this suggests the use of

the following adaptive procedure that depends on an estimator of θ:

– Step 1: compute an estimator of θ as θ̂n,

– Step 2: if θ̂n = 0, reject all hypotheses; otherwise, test the hypotheses by using the BH
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linear step-up procedure at level α/θ̂n. That is, reject all H(i) for i = 1, · · · , l̂, where

l̂ = max{i : p(i) ≤
iα

nθ̂n
}.

Now suppose that we take the most conservative estimate θ̂n = 1, then

l̂ = max{i : p(i) ≤
iα

n
} = k̂,

it means that the adaptive linear step-up procedure identifies with the BH linear step-up one in

this case. Moreover, if we take a better estimator θ̂n < 1, then l̂ > k̂. In other words, using the

adaptive linear step-up procedure, we reject a larger number of hypotheses while controlling the

same error rate, which leads to larger power.

Since the p-values that are associated with the false null hypotheses are likely to be small

and a large majority of the p-values in the interval [λ, 1], for λ not too small, should correspond

to the true null hypotheses, Schweder and Spjøtvoll [1982] suggested a procedure to estimate

θ, that depends on the unspecified parameter λ. This estimator is equal to the proportion of

p-values larger than this threshold λ divided by 1− λ, namely

θ̂n(λ) =
#{Pi > λ : 1 ≤ i ≤ n}

n(1− λ)
. (1.2)

Benjamini and Hochberg [2000] used this estimator to propose an adaptive linear step-up proce-

dure. They also showed that this adaptive procedure has higher power than the BH one. And

Storey et al. [2004] provided a proof that it controls FDR at a level α. Note that θ̂n(λ) is a

conservative estimator of θ (it means that θ̂n(λ) overestimates θ). Moreover, small values of λ

typically produce estimators with higher bias but lower variance, whereas large values of λ yield

low bias and high variance estimators. There exist many methods to choose the value of λ and

the most popular choice is to let λ = 1/2. Recently, Liang and Nettleton [2012] have summed

up many existing adaptive procedures under two different strategies to select λ, the first one

includes the adaptive procedures that use predetermined values of λ and the second one includes

the dynamic adaptive procedures where the parameter λ is determined by data.

A plug-in threshold procedure. We now present here the FDR controlling method that is

proposed by Genovese and Wasserman (2002, 2004). They consider the threshold

t(θ, F ) = sup{0 ≤ t ≤ 1 :
θt

F (t)
≤ α},
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where we recall that F is the cumulative distribution function of each p-value Pi. Suppose that

we reject the null hypotheses whenever the p-value is less than t(θ, F ). This threshold depends

on the unknown parameters θ and F , so we call t(θ, F ) the oracle threshold. From Genovese

and Wasserman [2002], it follows that, asymptotically, the FDR is less than α. Moreover, if F

is concave this threshold has the smallest asymptotic FNR among all procedures with FDR less

than or equal to α (cf. Genovese and Wasserman [2002]). The standard plug-in method is to

estimate the functional t(θ, F ) by t(θ̂n, F̂ ), where θ̂n and F̂ are estimators of θ and F . We thus

call any threshold of the form t(θ̂n, F̂ ) a plug-in threshold. For instance, let F̂n be the empirical

cumulative distribution function of P1, P2, · · · , Pn. Genovese and Wasserman [2004] showed that

under weak conditions on θ̂n, the thresholding procedure t(θ̂n, F̂n) asymptotically controls FDR

at a level α.

One-stage and two-stage adaptive procedures. Blanchard and Roquain [2009] propose

two FDR control procedures called one-stage and two-stage adaptive step-up procedures. In

their one-stage procedure, they reject all null hypotheses for which pi ≤ p(k), where

k = max

{
i : p(i) ≤ min

{ (1− λ)iα

m− i+ 1
, λ
}}

= max

{
i : p(i) ≤

iα

m
min

{ (1− λ)m

m− i+ 1
,
λm

iα

}}
,

for a fixed constant λ ∈ (0, 1). They focus on the choice λ = α, then this procedure can be

viewed as an adaptive linear step-up procedure with θ-estimator defined as

θ̂n(i) = max

{
m− i+ 1

(1− α)m
,
i

m

}
.

Their two-stage procedure is defined as an adaptive linear step-up procedure with θ-estimator

given by

θ̂BRn (λ) =
m−RBR(λ) + 1

(1− α)m
,

where RBR(λ) is the number of rejections that result from using the one-stage adaptive step-up

procedure at level λ ∈ (0, 1). These two procedures are proved to be competitive with previous

existing ones under the assumption of independence of the p-values. Moreover, the authors

propose some adaptive step-up procedures that have provably controlled FDR under positive

dependence and unspecified dependence of the p-values, respectively (for more detail, we refer

to Blanchard and Roquain [2009]).
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1.3 The FDR estimation approach

1.3.1 Estimation of pFDR and FDR

Rather than searching for a p-value threshold that can guarantee FDR control at a specified

level α, Storey (2002, 2004) proposed to estimate the FDR for a fixed rejection region and

provided a family of conservative point estimators. The following is Theorem 1 from Storey

[2002]. It allows us to write pFDR in a very simple form that does not depend on n.

Theorem 1.1. Suppose that n identical hypothesis tests are performed with the independent

statistics X1, . . . , Xn and rejection region Γ. Then

pFDR(Γ) =
θP(X ∈ Γ|H = 0)

P(X ∈ Γ)
= P(H = 0|X ∈ Γ).

In terms of p-values, instead of denoting rejection regions by Γ, we denote them by γ, which

refers to the interval [0, γ]. Then the pFDR can be written as

pFDR(γ) =
θP(P ≤ γ|H = 0)

P(P ≤ γ)
=

θγ

F (γ)
,

where P is the random p-value resulting from any test. And the FDR can be computed as

FDR(γ) = pFDR(γ)P(R > 0), where

P(R > 0) = 1− P(R = 0) = 1− P(∀i, Pi > γ)

= 1− [1− P(P ≤ γ)]n = 1− [1− F (γ)]n.

Thus, pFDR and FDR are asymptotically equivalent for a fixed rejection region, precisely we

have

pFDR(γ)− FDR(γ) = pFDR(γ)[1− F (γ)]n −→
n→∞

0.

It is then natural to use the same estimates for FDR(γ) and pFDR(γ). For a given estimator θ̂n

of θ, we estimate FDR(γ) by

F̂DR(γ) =
θ̂nγ

F̂n(γ)
,

where F̂n is the empirical distribution function of P1, . . . , Pn. For example, Storey [2002] considers

a conservative estimate of θ that depends on the tuning parameter λ and is defined as (1.2), then

he proposes an estimate of FDR(γ) as

F̂DRλ(γ) =
θ̂n(λ)γ

F̂n(γ)
.
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Note that a good θ-estimator is very important as a conservative θ-estimator in general leads

to a conservative FDR estimator, which can be used to control the FDR; this point was well

illustrated through the work of Storey [2002] and Storey et al. [2004]. We can also refer to

Benjamini et al. [2006] for more detail on this point.

1.3.2 Connection between FDR estimation and FDR control

Most FDR research has focused on FDR control instead of FDR estimation. However, there

is a connection between these two approaches. Let us first note that

l̂ = max{i : p(i) ≤
iα

nθ̂n
} = max{i :

nθ̂np(i)

i
≤ α} = max{i : F̂DR(p(i)) ≤ α},

ie, the adaptive linear step-up procedure is equivalent to finding the largest p-value p(l) such that

F̂DR(p(l)) ≤ α. The FDR estimation approach can be thus viewed as the “inverse problem”

of the FDR control approach. For any function h defined on [0, 1], let the step-up thresholding

function be

tα(h) = sup{0 ≤ t ≤ 1 : h(t) ≤ α}.

Then the threshold of the adaptive linear step-up procedure is exactly tα(F̂DR). Similarly, the

oracle threshold of the plug-in threshold procedure can be written

t(θ, F ) = sup{0 ≤ t ≤ 1 :
θt

F (t)
≤ α} = sup{0 ≤ t ≤ 1 : pFDR(t) ≤ α} = tα(pFDR).

The plug-in threshold procedure is thus identical to the adaptive linear step-up procedure when

we apply a common estimate θ̂n. We now present how a FDR estimation approach leads to a

FDR control approach. Since tα(F̂DR) is a random variable, we use the following notation

FDR{tα(F̂DR)} := E
[FP{tα(F̂DR)}
R{tα(F̂DR)}

]
.

Storey et al. [2004] and Liang and Nettleton [2012] proposed some FDR estimation approaches

such that FDR{tα(F̂DR)} ≤ α. Therefore, these thresholding procedures tα(F̂DR) control the

FDR at level α.

1.4 Local false discovery rate

Efron et al. [2001] define the local false discovery rate (`FDR) to quantify the plausibility

of a particular hypothesis being true, given its specific test statistic or p-value. In a mixture
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framework, the `FDR is the Bayes posterior probability

`FDR(x) = P(Hi being true |X = x) = 1− (1− θ)g1(x)

θg0(x) + (1− θ)g1(x)
.

In many multiple testing frameworks, we need information at the individual level about the

probability for a given observation to be a false positive [Aubert et al., 2004]. This motivates

estimating the local false discovery rate `FDR. Moreover, another motivation for estimating

the parameters in this mixture model comes from the works of Sun and Cai (2009, 2007), who

develop adaptive compound decision rules for false discovery rate control. These rules are based

on the estimation of the local false discovery rate `FDR. Let R be the set of ranked `̂FDR(xi):

R = {`̂FDR(1), · · · , `̂FDR(n)}. Sun and Cai [2007] proposed the following adaptive step-up

procedure:

Let k = max{i :
1

i

i∑
j=1

`̂FDR(j) ≤ α};

then reject all H(i), i = 1, · · · , k.

Sun and Cai [2007] showed that this procedure asymptotically attains the performance of an

oracle procedure and in some simulation studies, it is more efficient than the conventional p-

value-based methods, including the step-up procedure of Benjamini and Hochberg [1995] and

the plug-in procedure of Genovese and Wasserman [2004]. Moreover, recall that zi denotes the

z-value and pi denotes the p-value, we can write

`FDR(i) := `FDR(zi) :=
θφ(zi)

φ(zi)[θ + (1− θ)f1(Φ(zi))]

=
θ

θ + (1− θ)f1(pi)
:= `FDR(pi),

thus this procedure is more adaptive than the BH adaptive procedure in the sense that it adapts

to both the global feature p-value and z-value.

Let us note that pFDR and `FDR are analytically related by

pFDR(γ) =

∫ γ

−∞
`FDR(p)f(p)dp

(∫ γ

−∞
f(p)dp

)−1

= E{`FDR(P )|P ≤ γ},

then we can estimate pFDR or FDR by

F̂DR(p(i)) =
1

i

i∑
j=1

`̂FDR(j).
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So that the above adaptive step-up procedure can be viewed as a plug-in threshold procedure

tα(F̂DR). To conclude, let us stress that all FDR control procedures presented in Sections 1.2.2

and 1.4 can also be viewed as plug-in threshold procedures tα(F̂DR) with suitable estimates

F̂DR.

1.5 Semiparametric inference

In this section, we recall concepts from semiparametric theory. We follow the notation of

Chapter 25 and more particularly Section 25.4 in van der Vaart [1998] and refer to this book for

more details. Semiparametric models are statistical models in which the parameters are indexed

by a finite-dimensional vector and an infinite-dimensional parameter. Precisely, a semiparametric

model in a strict sense may have a natural parametrization (θ, f) 7→ Pθ,f , where θ is a Euclidean

parameter and f belongs to a nonparametric class of distributions. Here, we aim at estimating

the value ψ(Pθ,f ) = θ and consider f as a nuisance parameter. We shall recall the theory of

asymptotic efficiency for semiparametric models which is extended from parametric models.

1.5.1 Tangent sets and efficient influence function

We first recall the definition of tangent set in a general model. In this section, suppose

that we observe a random sample X1, X2, · · · , Xn from a distribution P which belongs to a

set P of probability measures on some measurable space (X ,A). In particular, we consider a

framework that is more general than the semiparametric one. We aim at estimating the value

ψ(P) of a functional ψ : P → Rk. Assume for simplicity that the parameter to be estimated

is one-dimensional (k = 1). In parametric models, we have a strict definition for the Fisher

information for estimating the parameters. So, what can we say about the information for the

semiparametric model P for estimating ψ(P)? For every smooth parametric submodel P0 ⊂ P

that contains the true distribution P, we can calculate its Fisher information for estimating ψ(P).

Then the information for estimating ψ(P) for the whole model is not bigger than the information

covered by each of these parametric submodels. So it is certainly not bigger than the infimum

of the informations over all submodels. The information for P is then simply defined as this

infimum. It seems that in most situations, it suffices to consider one-dimensional submodels P0.

We know that they should pass through the true distribution P and be differentiable in quadratic

mean at P which we shall define now.
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Definition 1.1. A differentiable path is a map t 7→ Pt from a neighbourhood [0, ε) of 0 to P with

P0 = P such that, for some measurable function g : X → R,∫ (dP1/2
t − dP1/2

t
− 1

2
gdP1/2

)2
→ 0 as t→ 0. (1.3)

The parametric submodel {Pt : 0 ≤ t < ε} is called differentiable in quadratic mean at P and the

function g is called the score function of the submodel {Pt : 0 ≤ t < ε}.

Letting t 7→ Pt range over a collection of these submodels, we obtain a collection of score

functions, which we call a tangent set of the model P at P. We denote this tangent set by ṖP.

When we consider all possible differentiable paths t 7→ Pt, we obtain the maximal collection of

score functions. This set is referred to as the maximal tangent set. A tangent set is usually a

cone: if g ∈ ṖP and a ≥ 0, then ag ∈ ṖP, since the path t 7→ Pat has score function ag when

t 7→ Pt has score function g. Usually, we construct the submodels t 7→ Pt such that, for every x,

g(x) =
∂

∂t

∣∣∣
t=0

log dPt(x).

This pointwise differentiability is not required by (1.3) . Conversely, given this pointwise differ-

entiability, we are not assured to have (1.3). We still need to be able to apply a convergence

theorem for integrals to obtain this type of convergence in quadratic mean, such as the dom-

inated convergence theorem of Lebesgue or the monotone convergence theorem, since we need

to interchange limit and integration. The following lemma solves most examples as stated in

van der Vaart [2002].

Lemma 1.1. If pt is the density function of a probability distribution Pt relative to a fixed measure

µ and t 7→
√
pt(x) is continuously differentiable in a neighbourhood of 0 and t 7→

∫
ṗ2
t /ptdµ, where

ṗt = ∂pt/∂t, is finite and continuous in this neighbourhood, then t 7→ Pt is a differentiable path.

The following lemma gives two fundamental but familiar properties of score functions. These

are consequences of the differentiability in quadratic mean. We denote by L2(P) the space of

measurable functions g : X → R with Pg2 =
∫
g2dP < ∞, where almost surely equal functions

are identified.

Lemma 1.2. Every score function belongs to the set {g ∈ L2(P) : Pg = 0}.

From this lemma, we can conclude that a tangent set is a subset of the space L2(P) with

mean zero. The tangent set is often a linear space, in which case we speak of a tangent space.
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Example (nonparametric model). Suppose that P consists of all probability distributions

on the sample space. Let g be an arbitrary function such that g ∈ L2(P) and Pg = 0. We

consider the submodel given by t 7→ pt(x) = c(t)k(tg(x))p0(x) for a nonnegative function k with

k(0) = k′(0) = 1 and [c(t)]−1 =
∫
k(tg(x))p0(x)dx. The function k(x) = 2(1 + exp(−2x))−1

can be used for example. By a direct calculation or by using Lemma 1.1, we see that the path

t 7→ pt(x) is differentiable and the corresponding score function is g. Then the maximal tangent

set coincides with the space {g ∈ L2(P) : Pg = 0}.

For defining the information for estimating ψ(P), only those submodels t 7→ Pt along which

the parameter t 7→ ψ(Pt) is differentiable in an appropriate sense are of interest. A minimal

requirement is that the map t 7→ ψ(Pt) is differentiable at t = 0, but we need more. More

precisely, a map ψ : P → R is called differentiable at P relative to a given tangent set ṖP if

there exists a continuous linear map ψ̇P : L2(P)→ R such that for every g ∈ ṖP and a submodel

t 7→ Pt with score function g,

∂ψ(Pt)
∂t

∣∣∣
t=0

= lim
t→0

ψ(Pt)− ψ(P)

t
= ψ̇Pg.

The Riesz representation theorem for Hilbert spaces yields the existence of a measurable function

ψ̃P : X → R such that

ψ̇Pg = 〈ψ̃P, g〉L2(P) =

∫
ψ̃PgdP. (1.4)

A function ψ̃P satisfying (1.4) is defined to be an influence function. The Riesz representation

theorem assures uniqueness of the function ψ̃P when the inner product 〈·, ·〉L2(P) is specified for

all functions of L2(P). Here, only inner products of ψ̃P with elements g of the tangent set ṖP
are specified and the tangent set does not span all of L2(P), therefore the function ψ̃P is not

uniquely defined by the functional ψ and the model P. However, using the projection theorem of

Hilbert spaces, we can construct a unique ψ̃P contained in linṖP, the closure of the linear span of

the tangent set. This function is called the efficient influence function. So, for further reference,

when we write ψ̃P, we refer this to be the efficient influence function.

1.5.2 Asymptotically efficient estimator

To motivate the definition of information in the semiparametric setup, we first consider a

differentiable parametric submodel t 7→ Pt with score function g. It is easy to show that the

Fisher information in this parametric submodel is equal to the variance of the score function g,

i.e. I = Pg2 = 〈g, g〉P. Thus, the Cramér-Rao bound for estimating the function t 7→ ψ(Pt),
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evaluated at t = 0, is
[∂ψ(Pt)/∂t|t=0]2

Pg2
=
〈ψ̃P, g〉2P
〈g, g〉P

.

We now present an important lemma.

Lemma 1.3. Suppose that the functional ψ : P → R is differentiable at P relative to a tangent

set ṖP. Then

sup
g∈linṖP

〈ψ̃P, g〉2P
〈g, g〉P

= Pψ̃2
P.

Now the special meaning of the efficient influence function becomes clear. The squared norm

Pψ̃2
P of the efficient influence function ψ̃P plays the role of a smallest asymptotic variance an

estimator for ψ(P) can have. We thus call the number Pψ̃2
P the efficiency bound or the optimal

variance.

For every function g in a given tangent set ṖP, we write Pt,g for a corresponding submodel

with score function g along which the function ψ is differentiable. The asymptotic minimax risk

of an estimator sequence Tn (relative to the tangent set ṖP), is defined as

sup
I

lim inf
n→∞

sup
g∈I

P1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2

,

where the first supremum is taken over all finite subsets I of the tangent set ṖP. We now state

the local asymptotic minimax theorem that gives a lower bound of the asymptotic minimax risk

of an arbitrary estimator Tn [see Theorem 25.21 in van der Vaart, 1998].

Theorem 1.2. (Local Asymptotic Minimax, LAM). Let the function ψ : P → R be dif-

ferentiable at P relative to the tangent cone ṖP with efficient influence function ψ̃P. If ṖP is a

convex cone, then for any estimator sequence Tn,

sup
I

lim inf
n→∞

sup
g∈I

P1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2 ≥ Pψ̃2

P. (1.5)

The first supremum is taken over all finite subsets I of the tangent set ṖP.

An estimator sequence Tn is called regular at P for estimating ψ(P) (relative to ṖP) if there

exists a probability measure L such that

√
n
(
Tn − ψ(P1/

√
n,g)
) P1/

√
n,g
 L, for every g ∈ ṖP,
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where P
 denotes convergence in distribution under P. We now state the convolution theorem,

that shows that the limit distribution L writes as the convolution between some unknown distri-

bution and the centered Gaussian distribution N(0,Pψ̃2
P) [see Theorem 25.20 in van der Vaart,

1998].

Theorem 1.3. (Convolution). Let the function ψ : P → R be differentiable at P relative to

the tangent cone ṖP with efficient influence function ψ̃P. Then the asymptotic variance of every

regular sequence of estimators is bounded below by Pψ̃2
P. Furthermore, if ṖP is a convex cone,

then every limit distribution L of a regular sequence of estimators can be written L = U + M

where U ∼ N(0,Pψ̃2
P) and M is some probability distribution independent of U .

According to this theorem, we say that an estimator sequence is asymptotically efficient at

P (relative to the tangent set ṖP) if it is regular at P with limit distribution L = N(0,Pψ̃2
P),

in other words it is the best regular estimator. The definition of asymptotic efficiency is not

absolute since it is defined relative to a given tangent set. In practice, we aim at finding a

tangent set and an estimator sequence such that the tangent set is big enough and the estimator

sequence efficient enough so that this estimator sequence is asymptotically efficient relative to

this tangent set. We end this section on general efficiency theory with an interesting lemma.

Lemma 1.4. Let the functional ψ : P → R be differentiable at P relative to the tangent cone

ṖP with efficient influence function ψ̃P. A sequence of estimators Tn is regular at P with limit

distribution N(0,Pψ̃2
P) if and only if

√
n
(
Tn − ψ(P)

)
=

1√
n

n∑
i=1

ψ̃P(Xi) + oP(1).

The nice thing about asymptotically efficient estimators is that they have interesting asymp-

totic properties and they are fully characterized by their efficient influence function. First, we

note that Tn is consistent, i.e., Tn
P→ ψ(P). In addition, by the central limit theorem and

Slutsky’s theorem, we obtain that

√
n
(
Tn − ψ(P)

) P
 N(0,Pψ̃2

P).

This means an asymptotically efficient estimator is asymptotically normal with asymptotic vari-

ance equal to the optimal variance. By Prohorov’s theorem, the estimator Tn is also
√
n-

consistent, i.e.,
√
n
(
Tn − ψ(P)

)
= OP(1). We conclude that every asymptotically efficient es-

timator is a consistent, moreover a
√
n-consistent and asymptotically normal estimator.
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1.5.3 Expressions for semiparametric models in a strict sense

We now focus our attention on semiparametric models in a strict sense, P = {Pθ,f : θ ∈

Θ, f ∈ F}, with Θ ⊂ R an open set and F an arbitrary infinite dimension set of probability

distributions. Our aim is to study the efficiency of an estimator Tn for ψ(Pθ,f ) = θ. Thus, we

are looking for the efficient influence function ψ̃θ,f in this special setting. We will express the

efficient influence function in terms of the efficient score function and the efficient information

matrix. As submodels, we use paths of the form t 7→ Pθ+ta,ft , for given paths t 7→ ft in F and

a ∈ R. The score functions for such submodels will typically have the form of a sum of partial

derivatives with respect to the parametric component θ and the nonparametric component f . If

l̇θ,f is the ordinary score function for θ in the model where f is fixed (as we consider an ordinary

parametric model), then we expect

∂

∂t

∣∣∣
t=0

log dPθ+ta,ft = al̇θ,f + g.

The function g has the interpretation of a score function for f when θ is fixed and typically runs

through an infinite-dimensional set. We refer to this set as the tangent set for f , and denote

it by f ṖPθ,f . The functional ψ(Pθ+ta,ft) = θ + ta is certainly differentiable with respect to t in

ordinary sense with derivative a. However, to be differentiable at Pθ,f relative to ṖPθ,f , we need

something more. By definition, ψ is differentiable relative to ṖPθ,f if and only if there exists a

function ψ̃θ,f such that

a =
∂

∂t

∣∣∣
t=0

ψ(Pθ+ta,ft) = 〈ψ̃θ,f , al̇θ,f + g〉Pθ,f , ∀a ∈ R, g ∈ f ṖPθ,f .

By putting a = 0, we obtain that 〈ψ̃θ,f , g〉Pθ,f = 0 for all g ∈ f ṖPθ,f . Thus, ψ̃θ,f must be

orthogonal to the tangent set f ṖPθ,f for the nuisance parameter. In particular, the efficient

influence function, which we denote again by ψ̃θ,f , is orthogonal to the nuisance tangent space

f ṖPθ,f . We shall state a lemma that gives an interesting form for the efficient influence function.

Before doing that, we define the operator Πθ,f : L2(Pθ,f ) → linf ṖPθ,f to be the orthogonal

projection onto the closure of the linear span of the nuisance tangent space in L2(Pθ,f ). The

function defined by l̃θ,f = l̇θ,f −Πθ,f l̇θ,f is called the efficient score function for θ and its variance

Ĩθ,f = Pθ,f l̃2θ,f is called the efficient information matrix for θ.

Lemma 1.5. Suppose that for every a ∈ R and every g ∈ f ṖPθ,f there exists a path t 7→ ft in F

such that ∫ [dP1/2
θ+ta,ft

− dP1/2
θ,f

t
− 1

2
(al̇θ,f + g)dP1/2

θ,f

]2
→ 0 as t→ 0.
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If Ĩθ,f is nonsingular, then the function ψ(Pθ,f ) = θ is differentiable at Pθ,f relative to the tangent

set ṖPθ,f = lin l̇θ,f + f ṖPθ,f = {al̇θ,f + g : a ∈ R, g ∈ f ṖPθ,f } with efficient influence function

ψ̃θ,f = Ĩ−1
θ,f l̃θ,f .

As a consequence, we obtain a specialized version of Lemma 1.4. Suppose the nuisance

tangent set f ṖPθ,f is a cone, then a sequence of estimators Tn is regular at Pθ,f with limiting

distribution N(0,Pθ,f ψ̃2
θ,f ) (asymptotically efficient) if and only if it satisfies

√
n(Tn − θ) =

1√
n

n∑
i=1

Ĩ−1
θ,f l̃θ,f (Xi) + oPθ,f (1).

We first see that

Pθ,f ψ̃2
θ,f =

(
Pθ,f l̃2θ,f

)−1
= Ĩ−1

θ,f .

The variance of the efficient influence function is equal to the inverse of the variance of the efficient

score function or the inverse of the efficient information matrix. Thus, the reason why we call

l̃θ,f the efficient score function and Ĩθ,f the efficient information matrix is now clear. Secondly,

under regularity conditions (see Chapters 5 and 8, van der Vaart [1998]), the maximum likelihood

estimator θ̂n in a parametric model satisfies

√
n(θ̂n − θ) =

1√
n

n∑
i=1

I−1
θ l̇θ(Xi) + oPθ(1),

where Iθ is the ordinary Fisher information matrix and l̇θ is the ordinary score function. The

only difference in a semiparametric model is that the ordinary score function l̇θ,f is replaced by

the efficient score function l̃θ,f and the Fisher information matrix Iθ,f for θ is replaced by the

efficient information matrix Ĩθ,f . A part of the score function for θ can be accounted for by score

functions for the nuisance parameter f when the nuisance parameter is unknown, a part of the

information for θ is lost. The orthogonal projection Πθ,f l̇θ,f of the score function for θ onto the

nuisance tangent space f ṖPθ,f corresponds with this loss. When there is no nuisance parameter,

there is no nuisance tangent space and thus no loss of information for estimating θ.

1.5.4 One-step estimator method

In this section, we introduce the one-step method to construct an asymptotically efficient

estimator, relying on a
√
n-consistent one [see van der Vaart, 1998, Section 25.8]. Let θ̂n be a

√
n-consistent estimator of θ, then θ̂n can be discretized on grids of mesh width n−1/2. Suppose
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that we are given a sequence of estimators l̂n,θ(·) = l̂n,θ(·;X1, . . . , Xn) of the efficient score

function l̃θ,f . Define with m = bn/2c,

l̂n,θ,i(·) =

{
l̂m,θ(·;X1, . . . , Xm) if i > m,

l̂n−m,θ(·;Xm+1, . . . , Xn) if i ≤ m.

Thus, for Xi ranging through each of the two halves of the sample, we use an estimator l̂n,θ,i
based on the other half of the sample. Then the one-step estimator is defined as

θ̃n = θ̂n −
( n∑
i=1

l̂2
n,θ̂n,i

(Xi)
)−1

n∑
i=1

l̂n,θ̂n,i(Xi).

This estimator θ̃n can be considered a one-step iteration of the Newton-Raphson algorithm for

solving an approximation of the equation
∑

i l̃θ,f (Xi) = 0 with respect to θ, starting at the initial

guess θ̂n. We now assume that, for every deterministic sequence θn = θ +O(n−1/2), we have

√
nPθn,f l̂n,θn

Pθ,f−−−→
n→∞

0, (1.6)

Pθn,f‖l̂n,θn − l̃θn,f‖2
Pθ,f−−−→
n→∞

0, (1.7)∫
‖l̃θn,fdP

1/2
θn,f
− l̃θ,fdP

1/2
θ,f ‖

2 −−−→
n→∞

0. (1.8)

Note that in the above notation, the term Pθn,f l̂ for some random function l̂ is an abbreviation

for the integral
∫
l̂(x)dPθn,f (x). Thus the expectation is taken with respect to x only and not

the random variables in l̂.

Theorem 1.4. [Theorem 25.57 in van der Vaart, 1998] Suppose that the model {Pθ,f : θ ∈ Θ} is

differentiable in quadratic mean with respect to θ at (θ, f), let the efficient information matrix Ĩθ,f

be nonsingular. Assume that (1.6)- (1.8) hold. Then the one-step estimator θ̃n is asymptotically

efficient at (θ, f).

This theorem reduces the problem of efficient estimation of θ to estimation of the efficient

score function. The estimator of the efficient score function must satisfy a “no-bias” (1.6) and

a consistency (1.7) conditions. The consistency condition is usually easy to arrange, but the

“no-bias” condition requires a convergence to zero of the bias at a rate faster than 1/
√
n. If it

fails, then the sequence θ̃n is not asymptotically efficient and may even converge at a slower rate

than
√
n. The good news is that if an efficient estimator sequence exists, then it can always be

constructed by the one-step method. In that sense the no-bias condition is necessary.
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Theorem 1.5. [Theorem 7.4 in van der Vaart, 2002] Suppose that the model {Pθ,f : θ ∈ Θ} is

differentiable in quadratic mean with respect to θ at (θ, f), let the efficient information matrix Ĩθ,f

be nonsingular, and assume that (1.8) holds. Then the existence of an asymptotically efficient

estimator of ψ(Pθ,f ) = θ implies the existence of a sequence of estimators l̂n,θ satisfying (1.6)

and (1.7).

1.5.5 The infinite bound case

We end this section with an impossibility result due to Chamberlain [1986]. Chamberlain

showed that if the semiparametric efficiency bound (i.e., the variance of the efficient influence

function ψ̃P) is infinitely large (e.g., Ĩθ,f = Pθ,f l̃2θ,f is singular), then no regular estimator exist.

More precisely, if the efficient information matrix is singular, the variance of the efficient influence

function is infinite and since this is a lower bound for the variance of any regular estimator, no

regular estimator can exist. More details about this and other impossibility theorems can be

found in Newey [1990].

1.6 Organization

Throughout this dissertation, we assume the test statistics are independent and identically

distributed (iid) with a continuous distribution under the corresponding null or alternative hy-

potheses, then the p-values are iid and follow the uniform distribution U([0, 1]) in interval [0, 1]

under the null hypotheses. The density g of the p-values is modeled by a two-component mixture

with following expression

∀x ∈ [0, 1], g(x) = θ + (1− θ)f(x),

where θ ∈ [0, 1] is the unknown proportion of true null hypotheses and f denotes the density

of p-values generated under the alternative (false null hypotheses). We recall that an adaptive

linear step-up procedure or a plug-in threshold procedure requires an estimator of the parameter

θ. A good θ-estimator is very important since a conservative θ-estimator in general leads to

a conservative FDR estimator, which can be used in FDR control procedures. Besides, the

problem of estimating the component f appears from the estimation of the local false discovery

rate, which is used in the adaptive step-up procedure of Sun and Cai [2007].

In the second chapter, we study the estimation of the proportion θ. Firstly, let us note that

many different estimators of θ have been proposed in the literature but their rate of convergence
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or asymptotic efficiency has only been partly studied. To our knowledge, there only exits some

estimators that converge to θ at nonparametric rate and it has not been investigated whether

the parametric rate of convergence may be achieved by a consistent estimator of θ in this semi-

parametric setup. We discuss asymptotic efficiency results and establish that two different cases

occur whether f vanishes on a non-empty interval or not. In the first case, we exhibit estimators

converging at parametric rate, compute the optimal asymptotic variance and conjecture that no

estimator is asymptotically efficient (i.e. attains the optimal asymptotic variance). In the second

case, we prove that the quadratic risk of any estimator does not converge at parametric rate. We

illustrate those results on simulated data. This chapter is a revised version that is submitted for

publication in a journal of statistics.

Motivated by the issue of local false discovery rate estimation, in the third chapter, we focus

on the estimation of the nonparametric unknown component f in the mixture, relying on a

preliminary estimator of the unknown proportion θ of true null hypotheses. We propose and

study the asymptotic properties of two different estimators for this unknown component. The

first estimator is a randomly weighted kernel estimator. We establish an upper bound for its

pointwise quadratic risk, exhibiting the classical nonparametric rate of convergence over a class

of Hőlder densities. To our knowledge, this is the first result establishing convergence as well as

corresponding rate for the estimation of the unknown component in this nonparametric mixture.

The second estimator is a maximum smoothed likelihood estimator. It is computed through an

iterative algorithm, for which we establish a descent property. In addition, these estimators are

used in a multiple testing procedure in order to estimate the local false discovery rate. Their

respective performances are then compared on synthetic data. This chapter is accepted for

publication in ESAIM: Probability and Statistics.

In the fourth chapter, we consider another mixture model that is useful to analyze gene

expression data coming from microarray analysis. It is a mixture of two components where one

component is assumed to be a known density with prior probability 1−p and the other component

is an unknown density that is assumed to be symmetric on R with non-null location parameter

µ. This model has been introduced by Bordes et al. [2006]. Here, we aim at computing the

efficient information matrix for estimating the Euclidean parameter θ = (p, µ) and some ideas

are proposed for future work.
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Chapter 2

Estimation of the proportion of true
null hypotheses

Abstract

We consider the problem of estimating the proportion θ of true null hypotheses in a

multiple testing context. The setup is classically modeled through a semiparametric

mixture with two components: a uniform distribution on interval [0, 1] with prior

probability θ and a nonparametric density f . We discuss asymptotic efficiency results

and establish that two different cases occur whether f vanishes on a non-empty

interval or not. In the first case, we exhibit estimators converging at parametric

rate, compute the optimal asymptotic variance and conjecture that no estimator

is asymptotically efficient (i.e. attains the optimal asymptotic variance). In the

second case, we prove that the quadratic risk of any estimator does not converge at

parametric rate. We illustrate those results on simulated data.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Lower bounds for the quadratic risk and efficiency . . . . . . . . . . 33
2.3 Upper bounds for the quadratic risk and efficiency (when δ > 0) . . 35
2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Proofs of technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.1 Introduction

The problem of estimating the proportion θ of true null hypotheses is of interest in situation

where several thousands of (independent) hypotheses can be tested simultaneously. One of the

typical applications in which multiple testing problems occur is estimating the proportion of
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genes that are not differentially expressed in deoxyribonucleic acid (DNA) microarray experi-

ments [see for instance Dudoit and van der Laan, 2008]. Among other application domains, we

mention astrophysics [Meinshausen and Rice, 2006] or neuroimaging [Turkheimer et al., 2001].

A reliable estimate of θ is important when one wants to control multiple error rates, such as

the false discovery rate (FDR) introduced by Benjamini and Hochberg [1995]. In this work, we

discuss asymptotic efficiency of estimators of the true proportion of null hypotheses. We stress

that the asymptotic framework is particularly relevant in the above mentioned contexts where

the number of tested hypotheses is huge.

In many recent articles [such as Broberg, 2005, Celisse and Robin, 2010, Genovese andWasser-

man, 2004, Langaas et al., 2005, etc], a two-component mixture density is used to model the

behavior of p-values X1, X2, . . . , Xn associated with n independent tested hypotheses. More

precisely, assume the test statistics are independent and identically distributed (iid) with a con-

tinuous distribution under the corresponding null hypotheses, then the p-values X1, X2, . . . , Xn

are iid and follow the uniform distribution U([0, 1]) on interval [0, 1] under the null hypotheses.

The density g of p-values is modeled by a two-component mixture with following expression

∀x ∈ [0, 1], g(x) = θ + (1− θ)f(x), (2.1)

where θ ∈ [0, 1] is the unknown proportion of true null hypotheses and f denotes the density of

p-values generated under the alternative (false null hypotheses).

Many different identifiability conditions on the parameter (θ, f) in model (2.1) have been

discussed in the literature. For example, Genovese and Wasserman [2004] introduce the concept

of purity that corresponds to the case where the essential infimum of f on [0, 1] is zero. They

prove that purity implies identifiability but not vice versa. Langaas et al. [2005] suppose that

f is decreasing with f(1) = 0 while Neuvial [2010] assumes that f is regular near x = 1 with

f(1) = 0 and Celisse and Robin [2010] consider that f vanishes on a whole interval included in

[0, 1]. These are sufficient but not necessary conditions on f that ensure identifiability. Now, if

we assume more generally that f belongs to some set F of densities on [0, 1], then a necessary

and sufficient condition for parameters identifiability is stated in the next result, whose proof is

given in Section 2.5.1.

Proposition 2.1. The parameter (θ, f) is identifiable on a set (0, 1) × F if and only if for all

f ∈ F and for all c ∈ (0, 1), we have c+ (1− c)f /∈ F .
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This very general result is the starting point to considering explicit sets F of densities that

ensure the parameter’s identifiability on (0, 1) × F . In particular, if F is a set of densities

constrained to have essential infimum equal to zero, one recovers the purity result of Genovese

and Wasserman [2004]. However, from an estimation perspective, the purity assumption is very

weak and it is hopeless to obtain a reliable estimate of θ based on the value of f at a unique

value (or at a finite number of values). Since the p-values that are associated with the false null

hypotheses are likely to be small and a large majority of the p-values in the interval [1 − δ, 1],

for δ not too large, should correspond to the true null hypotheses, the assumption that f is

non-increasing with f(1) = 0 is reasonable. Recall that this assumption is used in Langaas

et al. [2005] and partially in Celisse and Robin [2010]. In the following, we explore asymptotic

efficiency results for the estimation of θ by assuming that the function f belongs to a set of

densities (with respect to the Lebesgue measure µ) defined as

Fδ = {f : [0, 1] 7→ R+, continuously non increasing density, positive on [0, 1− δ)

and such that f|[1−δ,1] = 0}. (2.2)

We establish that two different cases are to be distinguished: δ is positive and δ is equal to zero.

In the first case, we obtain the existence of
√
n-consistent estimators of θ that is to say estimators

θ̂n such that
√
n(θ̂n−θ) is bounded in probability (denoted by

√
n(θ̂n−θ) = OP(1)). We exhibit

such estimators and also compute the asymptotic optimal variance for this problem. Moreover,

we conjecture that asymptotically efficient estimators (that is estimators asymptotically attaining

this variance lower bound) do not exist. In the second case, while the existence of an estimator

θ̂n of θ converging at parametric rate has not been established yet, we prove that if such a
√
n-

consistent estimator of θ exists, then the variance Var(
√
nθ̂n) cannot have a finite limit. In other

words, the quadratic risk of θ̂n cannot converge to zero at a parametric rate. Note that these

results are also true when we consider the more general case where the function f either vanishes

on a non-empty interval included in [0, 1] (thus not necessarily of the form [1− δ, 1]) or not.

Let us now discuss the different estimators of θ proposed in the literature, starting with

those assuming (implicitly or not) that f attains its minimum value on a whole interval. First,

Schweder and Spjøtvoll [1982] suggested a procedure to estimate θ, that has been later used by

Storey [2002]. This estimator depends on an unspecified parameter λ ∈ [0, 1) and is equal to the

proportion of p-values larger than this threshold λ divided by 1−λ. Storey established that it is a

conservative estimator, and one can note that it is consistent only if f attains its minimum value

on the interval [λ, 1] (an assumption not made in the article by Schweder and Spjøtvoll [1982] nor
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the one by Storey [2002]). Note that even if such an assumption were made, it would not solve

the problem of choosing λ such that f attains its infimum on [λ, 1]. Adapting this procedure in

order to end up with an estimate of the positive FDR (pFDR), Storey [2002] proposes a bootstrap

strategy to pick λ. More precisely, his procedure minimizes the mean squared error for estimating

the pFDR. Note that Genovese and Wasserman [2004] established that, for fixed value λ such that

the cumulative distribution function (cdf) F of f satisfies F (λ) < 1, Storey’s estimator converges

at parametric rate and is asymptotically normal, but is also asymptotically biased: thus it does

not converge to θ at parametric rate. Some other choices of λ are, for instance, based on break

point estimation [Turkheimer et al., 2001] or spline smoothing [Storey, 2003]. Another natural

class of procedures in this context is obtained by relying on a histogram estimator of g [Mosig

et al., 2001, Nettleton et al., 2006]. Among this kind of procedures, we mention the one proposed

recently by Celisse and Robin [2010] who proved convergence in probability of their estimator (to

the true parameter value) under the assumption that f vanishes on an interval. Note that both

Storey’s and histogram based estimators of θ are constructed using nonparametric estimates ĝ

of the density g and then estimate θ relying on the value of ĝ on a specific interval. The main

issue with those procedures is to automatically select an interval where the true density g is

identically equal to θ. As a conclusion on the existing results for this setup (f vanishing on a

non-empty interval), we stress the fact that none of these estimators were proven to be convergent

to θ at parametric rate. In Theorem 2.2 below, we prove that a very simple histogram based

estimator possesses this property, while in Theorem 2.3, we establish that this is also true for

the more elaborate procedure proposed by Celisse and Robin [2010] which has the advantage

of automatically selecting the "best" partition among a fixed collection. However, we are not

aware of a procedure for estimating θ that asymptotically attains the optimal variance in this

context. Besides, one might conjecture that such a procedure does not exist for regular models

(see Section 2.3.3).

Other estimators of θ are based on regularity or monotonicity assumptions made on f or

equivalently on g, combined with the assumption that the infimum of g is attained at x = 1.

These estimators rely on nonparametric estimates of g and appear to inherit nonparametric

rates of convergence. Langaas et al. [2005] derive estimators based on nonparametric maximum

likelihood estimation of the p-value density, in two setups: decreasing and convex decreasing

densities f . We mention that no theoretical properties of these estimators are given. Hengartner

and Stark [1995] propose a very general finite sample confidence envelope for a monotone density.
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Relying on this result and assuming moreover that the cdf G of g is concave and that g is Lipschitz

in a neighborhood of x = 1, Genovese and Wasserman [2004] construct an estimator converging

to g(1) = θ at rate (log n)1/3n−1/3. Under some regularity assumptions on f near x = 1, Neuvial

[2010] establishes that by letting λ → 1, Storey’s estimator may be turned into a consistent

estimator of θ, with a nonparametric rate of convergence equal to n−k/(2k+1)ηn, where ηn → +∞

and k controls the regularity of f near x = 1. Our results are in accordance to the literature: no
√
n-consistent estimator has been constructed yet, as is expected from the fact that the quadratic

risk of any estimator of θ cannot converge at parametric rate in this case (see Theorem 2.1).

To finish this tour on the literature about the estimation of θ, we mention that Meinshausen

and Bühlmann [2005] discuss probabilistic lower bounds for the proportion of true null hypothe-

ses, which are valid under general and unknown dependence structures between the test statistics.

The article is organized as follows. Section 2.2 establishes lower bounds on the quadratic

risk for the estimation of θ, while Section 2.3 explores corresponding upper bounds, i.e. the

existence of
√
n-consistent estimators of θ and the existence of asymptotically efficient estimators.

Section 2.4 illustrates our results relying on simulations. The proofs of the main results are

postponed to Section 2.5, while some technical lemmas are proved in Section 2.6.

2.2 Lower bounds for the quadratic risk and efficiency

In this section, we give lower bounds for the quadratic risk of any estimator of θ. For any

fixed unknown parameter δ ∈ [0, 1), we introduce an induced set of semiparametric distributions

Pδ defined as

Pδ =
{
Pθ,f ;

dPθ,f
dµ

= θ + (1− θ)f ; (θ, f) ∈ (0, 1)×Fδ
}
,

where Fδ has been defined in (2.2). Note that for any fixed value δ ∈ [0, 1), the condition stated

in Proposition 2.1 is satisfied on the set Fδ, namely for all f ∈ Fδ and for all c ∈ (0, 1), we have

c+ (1− c)f /∈ Fδ. Thus, the parameter (θ, f) is identifiable on (0, 1)×Fδ.

We follow notation form Chapter 25 and more particularly Section 25.4 in van der Vaart

[1998] and refer to this book. More precise definitions of the objects involved will also be given

in Section 2.5.2 together with the proof of the main result. We let Ṗδ denote a tangent set of the
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model Pδ at Pθ,f with respect to the parameter (θ, f). For every score function g in the tangent

set Ṗδ, we write Pt,g for a path with score function g. Namely, Pt,g equals Pθ+ta,ft for some path

t 7→ ft and some a ∈ R.

Now, an estimator sequence θ̂n is called regular at Pθ,f for estimating θ (relative to the

tangent set Ṗδ) if there exists a probability measure L such that for any score function g ∈ Ṗδ
corresponding to a path of the form t 7→ (θ + ta, ft), we have

√
n
(
θ̂n − ψ(P1/

√
n,g)
)

=
√
n
[
θ̂n −

(
θ +

a√
n

)]
d−→ L, under P1/

√
n,g,

where d−→ denotes convergence in distribution. According to a convolution theorem [see Theorem

25.20 in van der Vaart, 1998], this limit distribution writes as the convolution between some

unknown distribution and the centered Gaussian distribution N(0,Pθ,f (ψ̃2
θ,f )) with variance

Pθ,f (ψ̃2
θ,f ) =

∫
ψ̃2
θ,fdPθ,f ,

where ψ̃θ,f is the efficient influence function. Thus we say that an estimator sequence is asymptot-

ically efficient at Pθ,f (relative to the tangent set Ṗδ) if it is regular at Pθ,f with limit distribution

L = N(0,Pθ,f (ψ̃2
θ,f )), in other words it is the best regular estimator.

We define the quadratic risk of an estimator sequence θ̂n (relative to the tangent set Ṗδ) as

sup
Eδ

lim inf
n→∞

sup
g∈Eδ

P1/
√
n,g

[√
n
(
θ̂n − ψ(P1/

√
n,g)
)]2

,

where the first supremum is taken over all finite subsets Eδ of the tangent set Ṗδ. According to

the local asymptotic minimax (LAM) theorem [see Theorem 25.21 in van der Vaart, 1998], this

quantity is lower bounded by the minimal variance Pθ,f (ψ̃2
θ,f ).

Moreover, according to Lemma 25.23 in van der Vaart [1998], an estimator θ̂n of θ is asymp-

totically efficient if and only if

√
n
(
θ̂n − θ

)
=

1√
n

n∑
i=1

ψ̃θ,f (Xi) + oPθ,f (1).

Hence, an asymptotically efficient estimator is asymptotically normal with asymptotic variance

equal to the optimal variance.

Theorem 2.1. 1) When δ = 0, there is no regular estimator for θ relative to the tangent set

Ṗ0 and any estimator sequence θ̂n has an infinite quadratic risk, namely

sup
E0

lim inf
n→∞

sup
g∈E0

EP1/
√
n,g

[√
n
(
θ̂n − ψ(P1/

√
n,g)
)]2

= +∞,
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where the first supremum is taken over all finite subsets E0 of the tangent set Ṗ0.

2) When δ > 0, we obtain that

i) For any estimator sequence θ̂n,

sup
Eδ

lim inf
n→∞

sup
g∈Eδ

EP1/
√
n,g

[√
n
(
θ̂n − ψ(P1/

√
n,g)
)]2 ≥ θ(1

δ
− θ
)
,

where the first supremum is taken over all finite subsets Eδ of the tangent set Ṗδ.

ii) A sequence of estimators θ̂n is asymptotically efficient if and only if it satisfies

θ̂n =
1

n

n∑
i=1

1

δ
1Xi∈[1−δ,1] + oPθ,f (n−1/2). (2.3)

Let us now comment on this theorem. The case where f vanishes on a non empty interval

(δ > 0) appears to be easier from an estimation perspective. Otherwise (f vanishing at most on

isolated points), it is usual to add assumptions on f . Here, we choose to consider the case where

f is assumed to be non increasing (see definition (2.2) of Fδ). Similar results may be obtained

by replacing this assumption with a regularity constraint on f . Note also that when δ > 0, the

assumption that f is non increasing could be removed without any change in our results.

When δ = 0, we obtain that if there exists a
√
n-consistent estimator in model P0, it can not

have finite asymptotic variance. In other words, we could have
√
n(θ̂n − θ) = OP(1) for some

estimator θ̂n but then Var(
√
nθ̂n)→ +∞. However, we note that the only rates of convergence

obtained until now in this case are nonparametric ones.

When δ > 0, for fixed parameter value λ such that G(λ) < 1, Storey’s estimator θ̂Storey(λ)

satisfies
√
n

(
θ̂Storey(λ)− 1−G(λ)

1− λ

)
d−−−→

n→∞
N

(
0,
G(λ)(1−G(λ))

(1− λ)2

)
[see for instance Genovese and Wasserman, 2004]. In particular, if we assume that f vanishes on

[λ, 1] then we obtain that G(λ) = 1− θ(1−λ) and θ̂Storey(λ) becomes a
√
n-consistent estimator

of θ, which is moreover asymptotically distributed, with asymptotic variance

θ

(
1

1− λ
− θ
)
.

In this sense, the oracle version of Storey’s estimator that picks λ = 1 − δ (namely choosing λ

as the smallest value such that f vanishes on [λ, 1]) is asymptotically efficient. Note also that

θ̂Storey(λ) automatically satisfies (2.3).
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2.3 Upper bounds for the quadratic risk and efficiency (when
δ > 0)

In this section, we investigate the existence of asymptotically efficient estimators for θ, in the

case where δ > 0. We consider histogram based estimators of θ where a nonparametric histogram

estimator ĝ of g is combined with an interval selection that aims at picking an interval where

g is equal to θ. We start by establishing the existence of
√
n-consistent estimators: a simple

histogram based procedure is studied in Section 2.3.1 while a more elaborate one is the object

of Section 2.3.2. Finally in Section 2.3.3 we explain the general one-step method to construct an

asymptotically efficient estimator relying on a
√
n-consistent procedure and discuss conditions

under which an asymptotically efficient estimator could be obtained in model Pδ.

Note that we will assume that the density f belongs to Fδ with δ > 0 throughout the current

section. However, the results are easily generalised to the case where f vanishes on a non-empty

interval included in [0, 1] and is monotone outside this interval.

2.3.1 A histogram based estimator

Let ĝI be a histogram estimator corresponding to a partition I = (Ik)1,...,D of [0, 1], defined

by

ĝI(x) =
D∑
k=1

nk
n|Ik|

1Ik(x),

where nk = card{i : Xi ∈ Ik} is the number of observations in Ik and |Ik| is the width of interval

Ik. We estimate θ by the minimal value of ĝI , that is

θ̂I,n = min
1≤k≤D

nk
n|Ik|

=
nk̂n
n|Ik̂n |

, (2.4)

where we let

k̂n ∈ Argmin
1≤k≤D

{
nk
n|Ik|

=
1

n|Ik|

n∑
i=1

1Xi∈Ik

}
.

Note that histogram estimators are natural nonparametric estimators for g when assuming

that f ∈ Fδ with δ > 0, that is g is constant on an interval. It is easy to see that θ̂I,n is

almost surely consistent as soon as the partition I is fine enough. We moreover establish that

this estimator has the mean squared error of the order 1/n. The proof of this result appears in

Section 2.5.3.
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Theorem 2.2. Fix δ > 0 and suppose that f ∈ Fδ. Assume moreover that the partition I is

such that maxk |Ik| is small enough, then the estimator θ̂I,n has the following properties

i) θ̂I,n converges almost surely to θ,

ii) lim sup
n→∞

nE
[
(θ̂I,n − θ)2

]
< +∞.

Note that since θ̂I,n has the mean squared error of the order 1/n, we can deduce that θ̂I,n is
√
n-consistent and has a variance of the order 1/n. However, asymptotic normality of θ̂I,n or the

value of its asymptotic variance are difficult to obtain. Indeed, for any deterministic interval Ik,

the central limit theorem (CLT) applies on the estimator nk/(n|Ik|). But, an histogram based

estimator such as θ̂I,n is based on the selection of a random interval Î and the CLT fails to apply

directly on nÎ/(n|Î|). Note also that the choice of the partition I is not solved here. From a

practical point of view, decreasing the parameter maxk |Ik| will in fact increase the variance of

the estimator. In the next section, we study a procedure that automatically selects the best

partition among a given collection.

2.3.2 Celisse and Robin [2010]’s procedure

We recall here the procedure for estimating θ that is presented in Celisse and Robin [2010]. It

relies on an elaborate histogram approach that selects the best partition among a given collection.

As it will be seen from the simulations experiments (Section 2.4), its asymptotic variance is

likely to be smaller than for the previous estimator, justifying our interest into this procedure.

Unfortunately, from a theoretical point of view, we only establish that this estimator should be

as good as the previous one. Note that since not many estimators of θ have been proved to be
√
n-convergent, this is already a non trivial result.

For a given integer M , define IM as the set of partitions of [0, 1] such that for some integer

k with 1 ≤ k ≤M − 2, the first k intervals are regular of width 1/M and the last one is of width

(M − k)/M , namely

IM =
{
I(k) = (Ii)i=1,...,k+1 : ∀i ≤ k, |Ii| =

1

M
, |Ik+1| =

M − k
M

, 1 ≤ k ≤M − 2
}
.

These partitions are motivated by the assumption that f vanishes on a set [1 − δ, 1] ⊂ [0, 1].

Then for two given integers mmin < mmax, denote by I the following collection of partitions

I =
⋃

mmin≤m≤mmax

I2m . (2.5)
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Every partition I in I is characterized by a doublet (M = 2m, λ = k/M) and the quality of the

histogram estimator ĝI is measured by its quadratic risk. So in this sense, the oracle estimator

ĝI? is obtained through

I? = argmin
I∈I

E[||g − ĝI ||22] = argmin
I∈I

R(I), where R(I) = E
[
||ĝI ||22 − 2

∫ 1

0
ĝI(x)g(x)dx

]
.

However, for every partition I, the quantity R(I) depends on g which is unknown. Thus I? is an

oracle and not an estimator. It is then natural to replace R(I) by an estimator. In Celisse and

Robin [2008, 2010], the authors use leave-p-out (LPO) estimator of R(I) with p ∈ {1, . . . , n−1},

whose expression is given by [see Celisse and Robin, 2008, Theorem 2.1]

R̂p(I) =
2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
. (2.6)

The best theoretical value of p is the one that minimizes the mean squared error (MSE) of R̂p(I),

namely

p?(I) = argmin
p∈{1,...,n−1}

MSE(p, I) = argmin
p∈{1,...,n−1}

E
[(
R̂p(I)−R(I)

)2]
.

It clearly appears that MSE(p, I) has the form of a function Φ(p, I, α) [see Celisse and Robin,

2008, Proposition 2.1] depending on the unknown vector α = (α1, α2, . . . , αD) with αk = P(X1 ∈

Ik). A natural idea is then to replace the αks in Φ(p, I, α) by their empirical counterparts

α̂k = nk/n and an estimator of p?(I) is therefore given by

p̂(I) = argmin
p∈{1,...,n−1}

M̂SE(p, I) = argmin
p∈{1,...,n−1}

Φ(p, I, α̂).

The exact calculation of p̂(I) may be found in Theorem 3.1 from Celisse and Robin [2008]. Hence,

the procedure for estimating θ is the following one

1. For each partition I ∈ I, define p̂(I) = argmin
p∈{1,...,n−1}

M̂SE(p, I),

2. Choose Î = (M̂, λ̂) ∈ argmin
I∈I

R̂p̂(I)(I) such that the width of the interval [λ̂, 1] is maximum,

3. Estimate θ by θ̂CRn = card{i : Xi ∈ [λ̂, 1]}/[n(1− λ̂)].

Remark 2.1. In our procedure, we consider the set of natural partitions defined by (2.5), while

Celisse and Robin [2010] use the one defined by

I =
⋃

Mmin≤M≤Mmax

IM ,
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where IM is the set of partitions of [0, 1] such that the first k intervals and the last M − l ones

are regular of width 1/M , for some integers k, l with 2 ≤ k + 2 ≤ l ≤M ,

IM =
{
I = (Ii)i : ∀i 6= k + 1, |Ii| =

1

M
, |Ik+1| =

l − k
M

, 2 ≤ k + 2 ≤ l ≤M
}
.

This change is natural for lowering the complexity of the algorithm and has no consequences on

the theoretical properties of the estimator.

In Celisse and Robin [2010], the authors only establish convergence in probability of this

estimator. Here, we prove its almost sure convergence,
√
n-consistency and establish that its

variance is of the order 1/n. We now introduce a technical condition that comes from Celisse

and Robin [2010]. We let

∀(i, j) ∈ N2, sij =
D∑
k=1

αik
|Ik|j

,

and further assume that the collection of partitions I and density f are such that

∀I ∈ I, 8s11s21 − 2s2
11 + 8s32 − 10s2

21 − 4s22 6= 0, s21 − s22 − s32 + 3s11 6= 0. (2.7)

This technical condition is used in Celisse and Robin [2010] to control the behaviour of the

minimizer p̂(I). We are now ready to state our result, whose proof can be found in Section 2.5.4.

Theorem 2.3. Suppose that f satisfies the technical condition (2.7) and f belongs to Fδ. Assume

moreover that mmax is large enough, then the estimator θ̂CRn has the following properties

i) θ̂CRn converges almost surely to θ,

ii) θ̂CRn is
√
n-consistent, i.e.

√
n(θ̂CRn − θ) = OP(1),

iii) If p is fixed then lim sup
n→∞

nE
[
(θ̂CRn − θ)2

]
< +∞.

Here again, asymptotic normality of θ̂CRn or the exact value of its asymptotic variance are

difficult to obtain. Heuristically, one can explain that this procedure outperforms the simpler

histogram based with fixed partition approach described in the previous section. Indeed, when

considering a fixed partition, the latter should be fine enough to obtain convergence but refin-

ing the partition increases the variance of θ̂I,n. Here, Celisse and Robin’s approach realizes a

compromise on the size of the partition that is used.

2.3.3 One-step estimators

In this section, we introduce the one-step method to construct an asymptotically efficient

estimator, relying on a
√
n-consistent one [see van der Vaart, 1998, Section 25.8]. Here again,
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we use terminology from semiparametric theory. Let θ̂n be a
√
n-consistent estimator of θ, then

θ̂n can be discretized on grids of mesh width n−1/2. Suppose that we are given a sequence of

estimators l̂n,θ(·) = l̂n,θ(·;X1, . . . , Xn) of the efficient score function l̃θ,f (an expression of the

efficient score function in our context is given in Section 2.5.2). Define with m = bn/2c,

l̂n,θ,i(·) =

{
l̂m,θ(·;X1, . . . , Xm) if i > m,

l̂n−m,θ(·;Xm+1, . . . , Xn) if i ≤ m.

Thus, for Xi ranging through each of the two halves of the sample, we use an estimator l̂n,θ,i
based on the other half of the sample. We assume that, for every deterministic sequence θn =

θ +O(n−1/2), we have
√
nPθn,f l̂n,θn

Pθ,f−−−→
n→∞

0, (2.8)

Pθn,f‖l̂n,θn − l̃θn,f‖2
Pθ,f−−−→
n→∞

0, (2.9)∫
‖l̃θn,fdP

1/2
θn,f
− l̃θ,fdP

1/2
θ,f ‖

2 −−−→
n→∞

0. (2.10)

Note that in the above notation, the term Pθn,f l̂ for some random function l̂ is an abbreviation

for the integral
∫
l̂(x)dPθn,f (x). Thus the expectation is taken with respect to x only and not

the random variables in l̂. Now under the above assumptions, the one-step estimator defined as

θ̃n = θ̂n −
( n∑
i=1

l̂2
n,θ̂n,i

(Xi)
)−1

n∑
i=1

l̂n,θ̂n,i(Xi),

is asymptotically efficient at (θ, f) [see van der Vaart, 1998, Section 25.8]. This estimator θ̃n can

be considered a one-step iteration of the Newton-Raphson algorithm for solving an approximation

of the equation
∑

i l̃θ,f (Xi) = 0 with respect to θ, starting at the initial guess θ̂n.

Now, we discuss a converse result on necessary conditions for existence of an asymptotically

efficient estimator of θ and its implications in model Pδ.

Under condition (2.10), it is shown in Theorem 7.4 from van der Vaart [2002] that the

existence of an asymptotically efficient sequence of estimators of θ implies the existence of a

sequence of estimators l̂n,θ of l̃θ,f satisfying (2.8) and (2.9). Thus in this case, if an asymptotically

efficient estimator sequence exists, then it can always be constructed by the one-step method. In

our case, it is not difficult to prove that condition (2.10) holds. Then, the estimator l̂n,θ of the

efficient score function l̃θ,f must satisfy both a "no-bias" (2.8) and a consistency (2.9) condition.

The consistency is usually easy to arrange, but the "no-bias" condition requires a convergence

to zero of the bias at a rate faster than 1/
√
n. We thus obtain the following proposition, whose

proof can be found in Section 2.5.3.
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Proposition 2.2. The existence of an asymptotically efficient sequence of estimators of θ in

model Pδ is equivalent to the existence of a sequence of estimators l̂n,θ of the efficient score

function l̃θ,f satisfying (2.8) and (2.9). Moreover, if the efficient score function l̃θ,f is estimated

through a plug-in method that relies on an estimate δ̂n of the parameter δ, then this condition is

equivalent to
√
n(δ̂n − δ) = oP(1).

Let us now explain the consequences of this result. The proposition states that efficient

estimators of θ exist if and only if estimators of l̃θ,f that satisfy (2.8) and (2.9) can be constructed.

As there is no general method to estimate an efficient score function, such an estimator should

rely on the specific expression (2.15). Though we cannot claim that all estimators of l̃θ,f are

plug-in estimates based on an estimator of the parameter δ̂ plugged into expression (2.15), it

is likely to be the case. Then, existence of efficient estimators of θ is equivalent to existence

of estimators of δ that converge at faster than parametric rate. Note that this is possible for

irregular models [see Chapter 6 in Ibragimov and Hasminskii, 1981, for more details]. However,

for regular models, such estimators cannot be constructed and one might conjecture that efficient

estimators of θ do not exist in regular models.

2.4 Simulations

In this section, we give some illustrations of the previous results on some simulated experi-

ments and explore the non asymptotic performances of the estimators of θ previously discussed.

We choose to compare three different estimators: the histogram based estimator θ̂I,n defined

in Section 2.3.1 through (2.4), the more elaborate histogram based estimator θ̂CRn proposed

in Celisse and Robin [2010] and finally Langaas et al. [2005]’s estimator, denoted by θ̂Ln and

defined as the value ĝ(X(n)) where X(n) is the largest p-value and ĝ is Grenander’s estimator of

a decreasing density. We investigate the behaviour of these three different estimators of θ under

two different setups: δ = 0 and δ ∈ (0, 1). More precisely, we consider the alternative density f

given by

f(x) =
s

1− δ

(
1− x

1− δ

)s−1
1[0,1−δ](x),

where δ ∈ [0, 1) and s > 1. This form of density is introduced in Celisse and Robin [2010]

and covers various situations when varying its parameters. Note that f is always decreasing,

convex when s ≥ 2 and concave when s ∈ (1, 2]. In the experiments, we consider a total

of 8 different models corresponding to different parameter values. These models are labeled
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as described in Table 2.1, distinguishing the cases δ = 0 and δ > 0. As an illustration, we

represent some of the densities obtained for the p-values corresponding to 4 out of the 8 models

in Figure 2.1. For each estimator θ̂n of θ, we compare the quantity nE[(θ̂n − θ)2] with the

optimal variance θ(δ−1 − θ) when this bound exists. Equivalently, we compare the logarithm

of mean squared error, log(MSE) = logE[(θ̂n − θ)2] for each estimator θ̂n with − log(n) +

log[θ(δ−1 − θ)]. When δ = 0, we only compare the slope of the line induced by log(MSE) with

the parametric rate corresponding to a slope −1. In each case, we simulated data with sample

size n ∈ {5000; 7000; 9000; 10000; 12000; 14000; 15000} and perform R = 100 repetitions.

When computing the estimator θ̂I,n, the choice of the partition I surely affects the results.

Here, we have chosen a regular partition I such that it is fine enough (we fixed |Ik| < δ) but not

too fine (choosing a too small value of |Ik| increases the variance). The choice of the partition

in the simple procedure θ̂I,n is an issue for real data problems. Our goal here is to show that

on simulated experiments, the "best" of these estimators still has a larger variance than θ̂CRn .

Note that the partition I is always included in the collection I of partitions from which θ̂CRn is

computed.

(s, θ) δ = 0.3 δ = 0

(3, 0.6) (a1) (a2)
(3, 0.8) (b1) (b2)

(1.4, 0.7) (c1) (c2)
(1.4, 0.9) (d1) (d2)

Table 2.1: Labels of the 8 models with different parameter values.

The results are presented in Figure 2.2 for the case δ > 0 and Figure 2.3 for the case

δ = 0. First, we note that in both cases (δ > 0 and δ = 0), Langaas et al.’s estimator θ̂Ln
has nonparametric rate of convergence (null slope) and performs badly compared to θ̂I,n and

θ̂CRn . In particular, when δ = 0 the two histogram based procedures θ̂I,n and θ̂CRn have better

performances than the estimator θ̂Ln despite the fact that the latter is dedicated to the convex

decreasing setup. Now, when δ > 0, both estimators θ̂I,n and θ̂CRn exhibit a parametric rate

of convergence (slope equal to −1). Moreover, θ̂CRn has a smaller variance than θ̂I,n (smaller

intercept) and this variance is very close to the optimal one θ(δ−1 − θ). Now, when δ = 0, we

observe two different behaviors depending on whether f is convex or not. Indeed, for models (a2)

and (b2) corresponding to the convex case, we observe that both estimators θ̂I,n and θ̂CRn still

exhibit a parametric rate of convergence, with a smaller variance for θ̂CRn . These estimators are

thus robust to the assumption that f vanishes on an interval in the convex setup. The results
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Figure 2.1: Density function of the p-values. Top left: model (b1); top right: model (d1); bottom
left: model (a2); bottom right: model (c2).
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are slightly different when considering models (c2) and (d2) where f is now concave. These

estimators have a more erratic behaviour, exhibiting either parametric rate of convergence (θ̂CRn
in model (c2) and θ̂I,n in model (d2)) or nonparametric rates. Their respective performances

in terms of variance are also less clear. Nonetheless we conclude that θ̂CRn seems to exhibit the

overall best performances, with parametric rate of convergence and almost optimal asymptotic

variance.
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Figure 2.2: Logarithm of the mean squared error as a function of log(n) and corresponding
linear regression for θ̂Ln (◦ and black line, respectively), θ̂CRn (� and blue line, respectively)
and θ̂I,n (• and green line, respectively) in the case δ = 0.3, for different parameter values:
(a1) top left; (b1) top right; (c1) bottom left; (d1) bottom right. Red line represents the line
y = − log(n) + log[θ(δ−1 − θ)].

2.5 Proofs of main results

2.5.1 Proof of Proposition 2.1

Sufficiency: Let us suppose that for all f ∈ F and for all c ∈ (0, 1), we have c+ (1− c)f /∈ F .

We prove that the parameters θ and f are identifiable on the set (0, 1) × F by contradiction.
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Figure 2.3: Logarithm of the mean squared error as a function of log(n) and corresponding linear
regression for θ̂Ln (◦ and black line, respectively), θ̂CRn (� and blue line, respectively) and θ̂I,n (•
and green line, respectively) in the case δ = 0, for different parameter values: (a2) top left; (b2)
top right; (c2) bottom left; (d2) bottom right. Red line represents the line y = − log(n) + c for
some well chosen constant c.
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Suppose that there exist (θ1, f1) and (θ2, f2) ∈ F , (θ1, f1) 6= (θ2, f2) such that

θ1 + (1− θ1)f1(x) = θ2 + (1− θ2)f2(x), for all x ∈ [0, 1]. (2.11)

We can always consider θ1 > θ2. Let us denote by c = (θ1 − θ2)/(1 − θ2), then c ∈ (0, 1). We

obtain that

θ1 + (1− θ1)f1(x) = θ2 + (1− θ2)(c+ (1− c)f1(x)), for all x ∈ [0, 1]. (2.12)

From (2.11) and (2.12), we have f2 = c+(1−c)f1, it means that there exist f1 ∈ F and c ∈ (0, 1)

such that c+ (1− c)f1 ∈ F . So we have a contradiction.

Necessity: Suppose that the parameters θ and f are identifiable on the set (0, 1)×F . We prove

by contradiction that for all f ∈ F and for all c ∈ (0, 1), we have c + (1 − c)f /∈ F . Indeed,

suppose that there exist f ∈ F and c ∈ (0, 1) such that c+ (1− c)f ∈ F . For all θ1 ∈ (0, 1), we

denote θ2 = c+ (1− c)θ1, then we obtain

θ1 + (1− θ1)(c+ (1− c)f(x)) = θ2 + (1− θ2)f(x), for all x ∈ [0, 1].

This implies that θ and f are not identifiable on the set (0, 1)×F .

2.5.2 Proof of Theorem 2.1

Let us first describe more precisely the objects arising from semiparametric theory in our

setting. Fix a parameter value (θ, f) and consider first a parametric submodel of Fδ induced by

the following path

t 7→ ft(x) = c(t)k(th0(x))f(x), (2.13)

where h0 is a continuous and non increasing function on [0, 1], the function k is defined by

k(u) = 2(1 + e−2u)−1 and the normalising constant c(t) satisfies c(t)−1 =
∫
k(th0(u))f(u)du.

A tangent set f Ṗδ for the parameter f is composed of the score functions associated to such

parametric submodels (as h0 varies). It is easy to see that the path (2.13) is differentiable and

that its corresponding score function is obtained by differentiating t 7→ log[θ + (1 − θ)ft(x)] at

t = 0. We thus obtain a tangent set for f given by

f Ṗδ =
{
h =

(1− θ)fh0

θ + (1− θ)f
;h0 is continuous and non increasing on [0, 1− δ) with

∫
fh0 = 0

}
.

We consider parametric submodels of Pδ induced by paths of the form t 7→ Pθ+ta,ft where the

paths t 7→ ft in Fδ are given by (2.13). We remark that if l̇θ,f is the ordinary score function for
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θ in the model in which f is fixed, then for every a ∈ R and for every h ∈ f Ṗδ, we have al̇θ,f + h

is a score function for (θ, f) corresponding to the path t 7→ Pθ+ta,ft . Hence, a tangent set Ṗδ of

the model Pδ at Pθ,f with respect to the parameter (θ, f) is given by the linear span

Ṗδ = lin
(
l̇θ,f + f Ṗδ

)
= {αl̇θ,f + βh; (α, β) ∈ R2, h ∈ f Ṗδ}.

Moreover, the ordinary score function l̇θ,f for θ in the model in which f is fixed is given by

l̇θ,f (x) =
∂

∂θ
log[θ + (1− θ)f(x)] =

1− f(x)

θ + (1− θ)f(x)
. (2.14)

Now we let l̃θ,f be the efficient score function and Ĩθ,f be the efficient information for estimating

ψ(Pθ,f ) = θ. These quantities are defined respectively as

l̃θ,f = l̇θ,f −Πθ,f l̇θ,f and Ĩθ,f = Pθ,f (l̃2θ,f ),

where Πθ,f is the orthogonal projection onto the closure of the linear span of f Ṗδ in L2(Pθ,f ).

The functional ψ : Pθ,f 7→ θ is said to be differentiable at Pθ,f relative to the tangent set Ṗδ if

there exists a continuous linear map ψ̃θ,f : L2(Pθ,f ) 7→ R, called the efficient influence function,

such that for every path t 7→ ft with score function h ∈ f Ṗδ, we have

∀a ∈ R, a =

∫
ψ̃θ,f (x)[aᵀ l̇θ,f (x) + h(x)]dPθ,f (x).

Setting a = 0, we see that this efficient influence function must be orthogonal to the tangent

set f Ṗδ. Finally, note that under some assumptions, the efficient influence function ψ̃θ,f equals

Ĩ−1
θ,f l̃θ,f [see Lemma 25.25 in van der Vaart, 1998]. The following proposition provides expressions

for these quantities in our setup.

Proposition 2.3. The efficient score function l̃θ,f and the efficient information Ĩθ,f for estimat-

ing θ in model Pδ are given by

l̃θ,f (x) =
1

θ
− 1

θ(1− θδ)
1[0,1−δ)(x) and Ĩθ,f =

δ

θ(1− θδ)
, (2.15)

where 1A(·) is the indicator function of set A. When δ > 0, the efficient influence function ψ̃θ,f

relative to the tangent set Ṗδ is given by

ψ̃θ,f (x) =
1

δ
1[1−δ,1](x)− θ.
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Proof of Proposition 2.3. The ordinary score function l̇θ,f can be written as

l̇θ,f (x) =
∂

∂θ
log[θ + (1− θ)f(x)]

=
( 1− f(x)

θ + (1− θ)f(x)
+

δ

1− θδ

)
1[0,1−δ)(x) +

1

θ
1[1−δ,1](x)− δ

1− θδ
1[0,1−δ)(x). (2.16)

Let us recall that Πθ,f is the orthogonal projection onto the closure of the linear span of f Ṗδ
in L2(Pθ,f ). We prove that the orthogonal projection of l̇θ,f onto this space is equal to the first

term appearing in the right-hand side of (2.16), namely

Πθ,f l̇θ,f (x) =
( 1− f(x)

θ + (1− θ)f(x)
+

δ

1− θδ

)
1[0,1−δ)(x), (2.17)

and then the efficient score function for θ is

l̃θ,f (x) = l̇θ,f (x)−Πθ,f l̇θ,f (x) =
1

θ
1[1−δ,1](x)− δ

1− θδ
1[0,1−δ)(x).

In fact, we can write

−
( 1− f
θ + (1− θ)f

+
δ

1− θδ

)
1[0,1−δ) =

(1− θ)fh0

θ + (1− θ)f
,

where

h0(x) = −
( 1− f(x)

(1− θ)f(x)
+

δ

1− θδ
× θ + (1− θ)f(x)

(1− θ)f(x)

)
1[0,1−δ)(x)

=
1

(1− θ)(1− θδ)

(
1− δ − 1

f(x)

)
1[0,1−δ)(x).

The function h0 is continuous and decreasing on [0, 1 − δ). It is not difficult to examine the

condition
∫
fh0 = 0. Indeed,∫ 1

0
f(x)h0(x)dx =

1

(1− θ)(1− θδ)

∫ 1−δ

0
[(1− δ)f(x)− 1]dx

=
1

(1− θ)(1− θδ)

[ ∫ 1

0
(1− δ)f(x)dx− (1− δ)

]
= 0.

Hence ( 1− f
θ + (1− θ)f

+
δ

1− θδ

)
1[0,1−δ) belongs to lin(f Ṗδ).

Now, to conclude the proof of (2.17), it is necessary to establish that the second term in the

right hand side of (2.16) is orthogonal to the closure of the linear span of f Ṗδ, namely

1

θ
1[1−δ,1] −

δ

1− θδ
1[0,1−δ) =

1

θ(1− θδ)
1[0,1−δ) −

δ

1− θδ
⊥ lin(f Ṗδ),
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where ⊥ means orthogonality in L2(Pθ,f ). In fact, for every score function

h =
(1− θ)fh0

θ + (1− θ)f
∈ f Ṗδ,

the scalar product between h and the remaining term in (2.16) is given by∫ 1

0

[ 1

θ(1− θδ)
1[0,1−δ)(x)− δ

1− θδ
]
h(x)dPθ,f (x)

=

∫ 1

0

[ 1

θ(1− θδ)
1[0,1−δ)(x)− δ

1− θδ
](1− θ)f(x)h0(x)

θ + (1− θ)f(x)
[θ + (1− θ)f(x)]dx

=
1− θ

θ(1− θδ)

∫ 1

0
f(x)h0(x)1[0,1−δ)(x)dx− (1− θ)δ

1− θδ

∫ 1

0
f(x)h0(x)dx

= 0.

This establishes (2.17). Let us now calculate the efficient information

Ĩθ,f =Pθ,f (l̃2θ,f )

=

∫ 1

0

( 1

θ2
1[1−δ,1](x) +

δ2

(1− θδ)2
1[0,1−δ)(x)

)
[θ + (1− θ)f(x)]dx

=
δ

θ
+

δ2

(1− θδ)2
(1− θδ)

=
δ

θ(1− θδ)
.

We now turn to the particular case where δ = 0. In this case the previous computations show

that l̇θ,f belongs to the closure of the linear span of f Ṗδ and that the Fisher information is zero.

When δ > 0, the Fisher information is positive and the efficient influence function is given by

ψ̃θ,f (x) =Ĩ−1
θ,f l̃θ,f (x)

=
θ(1− θδ)

δ

(1

θ
1[1−δ,1](x)− δ

1− θδ
1[0,1−δ)(x)

)
=

1− θδ
δ

1[1−δ,1](x)− θ1[0,1−δ)(x)

=
1

δ
1[1−δ,1](x)− θ,

which concludes the proof.

We are now ready to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. We start by dealing with the case δ = 0. Let us recall that in this case,

the ordinary score l̇θ,f belongs to f Ṗ0 and the Fisher information is zero. Then, using Theorem
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2 in Chamberlain [1986], we conclude that there is no regular estimator for θ relative to the

tangent set Ṗ0. We remark that the tangent set f Ṗ0 is a linear subspace of L2(Pθ,f ) with infinite

dimension. So we can choose an orthonormal basis {hi}∞i=1 of f Ṗ0 such that for every m, we

have l̇θ,f /∈ f Ṗ0,m := lin(h1, h2, . . . , hm). We thus have

sup
E0

lim inf
n→∞

sup
g∈E0

EP1/
√
n,g

[√
n
(
θ̂n − ψ(P1/

√
n,g)
)]2

≥ sup
F0

lim inf
n→∞

sup
g∈F0

EP1/
√
n,g

[√
n
(
θ̂n − ψ(P1/

√
n,g)
)]2

,

where E0 and F0 range through all finite subsets of the tangent sets Ṗ0 = lin(l̇θ,f + f Ṗ0) = f Ṗ0

and lin
(
l̇θ,f + f Ṗ0,m

)
= f Ṗ0,m, respectively. The efficient score function for θ corresponding to

the tangent set f Ṗ0,m is

l̃θ,f,m = l̇θ,f −
m∑
i=1

〈l̇θ,f , hi〉hi 6= 0.

Moreover, the efficient information Ĩθ,f,m = Pθ,f (l̃2θ,f,m) is non zero. Using Lemma 25.25 from

van der Vaart [1998], the efficient influence function relative to the tangent set lin
(
l̇θ,f + f Ṗ0,m

)
is ψ̃θ,f,m = Ĩ−1

θ,f,m l̃θ,f,m. So we can apply Theorem 25.21 from van der Vaart [1998] to obtain that

sup
F0

lim inf
n→∞

sup
g∈F0

EP1/
√
n,g

[√
n
(
θ̂n − ψ(P1/

√
n,g)
)]2 ≥ Ĩ−1

θ,f,m.

Since Ĩθ,f,m −−−−→
m→∞

Ĩθ,f = 0, we obtain the result. The second part of the proof concerning δ > 0

is an immediate consequence of Proposition 2.3 together with Theorem 25.21 and Lemma 25.23

in van der Vaart [1998].

2.5.3 Proofs from Sections 2.3.1 and 2.3.3

Proof of Theorem 2.2. Let us denote by D = {1, 2, · · · , D}, D0 = {k ∈ D such that Ik ⊆

[1− δ, 1]} and D1 = D \ D0 = {k ∈ D such that Ik * [1− δ, 1]}. We fix an integer k0 ∈ D0. We

start by proving that the estimator θ̂I,n converges almost surely to θ. Indeed, we can write that

θ̂I,n = θ +
∑
k∈D0

( nk
n|Ik|

− θ
)
1{k̂n = k}+ (θ̂I,n − θ)1{Ik̂n * [1− δ, 1]}, (2.18)

where 1{A} or 1A is used to denote the indicator function of set A. By using the strong law of

large numbers, we have the almost sure convergences

∀k ∈ D0,
nk
n|Ik|

a.s.−−−−−→
n→+∞

θ,

∀k ∈ D1,
nk
n|Ik|

a.s.−−−−−→
n→+∞

αk
|Ik|

=
1

|Ik|

∫
Ik

g(u)du > θ.
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As a consequence, we obtain that the second term in the right-hand side of (2.18) converges

almost surely to zero, namely∣∣∣ ∑
k∈D0

( nk
n|Ik|

− θ
)
1{k̂n = k}

∣∣∣ ≤ ∑
k∈D0

∣∣∣ nk
n|Ik|

− θ
∣∣∣ a.s.−−−−−→
n→+∞

0.

The third term in the right-hand side of (2.18) also converges almost surely to zero. Indeed, we

have

|θ̂I,n − θ|1{Ik̂n * [1− δ, 1]} ≤
(

max
1≤k≤D

1

|Ik|
− θ
) ∑
k∈D1

1{k̂n = k}.

For all k ∈ D1, we have

1{k̂n = k} = 1
{ nk
n|Ik|

≤ nj
n|Ij |

, ∀j ∈ D
}

≤ 1
{ nk
n|Ik|

≤ nk0
n|Ik0 |

}
≤ 1

{ nk0
n|Ik0 |

− θ +
αk
|Ik|
− nk
n|Ik|

≥ αk
|Ik|
− θ
}
.

Since εk = αk/|Ik| − θ > 0 and

nk0
n|Ik0 |

− θ +
αk
|Ik|
− nk
n|Ik|

a.s.−−−−−→
n→+∞

0,

we obtain that

1
{ nk0
n|Ik0 |

− θ +
αk
|Ik|
− nk
n|Ik|

≥ εk
}

a.s.−−−−−→
n→+∞

0,

which concludes the proof of the almost sure convergence of θ̂I,n. We now prove the second

statement of the proposition. We have

E
[
(
√
n(θ̂I,n−θ))2

]
=
∑
k∈D0

E
[(√

n
( nk
n|Ik|

−θ
))2

1k̂n=k

]
+
∑
k∈D1

E
[(√

n
( nk
n|Ik|

−θ
))2

1k̂n=k

]
. (2.19)

The second term in the right-hand side of (2.19) is bounded by∑
k∈D1

E
[(√

n
( nk
n|Ik|

− θ
))2

1k̂n=k

]
≤
(

max
1≤k≤D

1

|Ik|
− θ
)2 ∑

k∈D1

nP(k̂n = k),

where for all k ∈ D1, according to Hoeffding’s inequality,

P(k̂n = k) ≤ P
( nk
n|Ik|

≤ nk0
n|Ik0 |

)
≤ P

[ n∑
i=1

( 1

|Ik0 |
1{Xi ∈ Ik0} − θ +

αk
|Ik|
− 1

|Ik|
1{Xi ∈ Ik}

)
≥ nεk

]
≤ exp

[
− 2nε2k

( 1

|Ik|
+

1

|Ik0 |

)−2]
.
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For the first term in the right-hand side of (2.19), we apply Cauchy-Schwarz’s inequality∑
k∈D0

E
[(√

n
( nk
n|Ik|

− θ
))2

1k̂n=k

]
≤

√∑
k∈D0

E
[(√

n
( nk
n|Ik|

− θ
))4]√∑

k∈D0

P(k̂n = k)

≤
√∑
k∈D0

E
[(√

n
( nk
n|Ik|

− θ
))4]

, (2.20)

where for all k ∈ D0,

E
[(√

n
( nk
n|Ik|

− θ
))4]

= E
[ 1

n2

( n∑
i=1

( 1

|Ik|
1{Xi ∈ Ik} − θ

))4]
=

1

n
E
[( 1

|Ik|
1{X1 ∈ Ik} − θ

)4]
+
n− 1

n
E2
[( 1

|Ik|
1{X1 ∈ Ik} − θ

)2]
=

θ

n

( 1

|Ik|3
− 4θ

|Ik|2
+

6θ2

|Ik|
− 3θ3

)
+
n− 1

n
σ4
k. (2.21)

Thus, we finally obtain that

nE
[
(θ̂I,n − θ)2

]
≤

√√√√∑
k∈D0

[ θ
n

( 1

|Ik|3
− 4θ

|Ik|2
+

6θ2

|Ik|
− 3θ3

)
+
n− 1

n
σ4
k

]
+

(
max

1≤k≤D

1

|Ik|
− θ
)2 ∑

k∈D1

n exp
[
− 2nε2k

( 1

|Ik|
+

1

|Ik0 |

)−2]
−−−−−→
n→+∞

√∑
k∈D0

σ4
k.

Proof of Proposition 2.2. Let us first establish that condition (2.10) holds. In fact, with the

notation pθ,f = θ + (1− θ)f , we have∫
‖l̃θn,fdP

1/2
θn,f
− l̃θ,fdP

1/2
θ,f ‖

2 =

∫ 1

0

(
l̃θn,f (x)

√
pθn,f (x)− l̃θ,f (x)

√
pθ,f (x)

)2
dx

≤ 2

∫ 1

0

(
l̃θn,f (x)− l̃θ,f (x)

)2
pθn,f (x)dx+ 2

∫ 1

0
l̃2θ,f (x)

(√
pθn,f (x)−

√
pθ,f (x)

)2
dx

≤ 2

∫ 1

0

[ 1

θn
− 1

θ
+
( 1

θ(1− θδ)
− 1

θn(1− θnδ)

)
1{f(x)>0}

]2
pθn,f (x)dx

+2

∫ 1

0

[1

θ
− 1

θ(1− θδ)
1{f(x)>0}

]2 (θn − θ)2(1− f(x))2(√
pθn,f (x) +

√
pθ,f (x)

)2dx

≤ 2

∫ 1

0
(θn − θ)2

[ 1

θθn
+

δ(θ + θn) + 1

θθn(1− θδ)(1− θnδ)
1{f(x)>0}

]2
pθn,f (x)dx

+2

∫ 1

0
(θn − θ)22

[ 1

θ2
+

1

θ2(1− θ)2

] (1− f(x))2(√
θn +

√
θ
)2dx

≤ (θn − θ)2
[C
θ2

+
C(1 + 2Cθ

θ2(1− θ)2

]2
+ C(θn − θ)2

[ 1

θ3
+

1

θ3(1− θ)2

]
= O

( 1

n

)
,
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where C is some positive constant. Thus, according to Theorem 7.4 from van der Vaart [2002], the

existence of an asymptotically efficient sequence of estimators of θ is equivalent to the existence

of a sequence of estimators l̂n,θ satisfying (2.8) and (2.9).

Now in model Pδ, the efficient score function l̃θ,f is given by

l̃θ,f (x) =
1

θ
− 1

θ(1− θδ)
1[0,1−δ)(x),

so that it is natural to estimate the parameter δ in order to estimate l̃θ,f . Let δ̂n be any given

consistent (in probability) estimator of δ. Let us examine condition (2.8) more closely. We have

√
nPθn,f l̂n,θn =

√
nPθn,f (l̂n,θn − l̃θn,f )

=
√
n

∫ 1

0

1

θn

[ 1

1− θnδ̂n
1[0,1−δ̂n)(x)− 1

1− θnδ
1[0,1−δ)(x)

]
gθn,f (x)dx

=

∫ 1

0

√
n

θn

[( 1

1− θnδ̂n
− 1

1− θnδ

)
1[0,1−δ̂n)(x)

+
1

1− θnδ

(
1[0,1−δ̂n)(x)− 1[0,1−δ)(x)

)]
gθn,f (x)dx

=
√
n(δ̂n − δ)

∫ 1−δ̂n

0

gθn,f (x)

(1− θnδ)(1− θnδ̂n)
dx+

√
n

∫ 1−δ̂n

1−δ

gθn,f (x)

1− θnδ
dx

=
√
n(δ̂n − δ)

[ ∫ 1−δ

0

gθ,f (x)

(1− θδ)2
dx−

gθ,f (1− δ)
1− θδ

+ oP(1)
]
.

Hence, the "no-bias" condition (2.8) is equivalent to the existence of an estimator δ̂n of δ

that converges at a rate faster than 1/
√
n, namely such that

√
n(δ̂n− δ) = oP(1). With the same

argument as in the previous calculation, the consistency condition (2.9) is satisfied as soon as

the estimator δ̂n converges in probability to δ.

2.5.4 Proof of Theorem 2.3

For each partition I, let us denote by FI the vector space of piecewise constant functions

built from the partition I and gI the orthogonal projection of g ∈ L2([0, 1]) onto FI . The mean

squared error of a histogram estimator ĝI can be written as the sum of a bias term and a variance

term

E[||g − ĝI ||22] = ||g − gI ||22 + E[||gI − ĝI ||22].

We introduce three lemmas that are needed to prove Theorem 2.3. The proofs of these technical

lemmas is further postponed to Section 2.6.
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Lemma 2.1. Let I = (Ik)
D
k=1 be an arbitrary partition of [0, 1]. Then the variance term of

the mean squared error of a histogram estimator ĝI is bounded by C/n, where C is a positive

constant. In other words,

E[||gI − ĝI ||22] = O
( 1

n

)
.

For any partition I = (Ik)1,...,D of [0, 1], we let

L(I) = ||gI − g||22 and L̂p(I) = R̂p(I) + ||g||22,

respectively the bias term of the mean squared error of a histogram estimator ĝI and its estimator.

Lemma 2.2. Let I = (Ik)1,...,D be an arbitrary partition of [0, 1]. Let p ∈ {1, 2, . . . , n− 1} such

that lim
n→∞

p/n < 1. Then we have the following results

i) L̂p(I)
a.s.−−−→
n→∞

L(I)

ii)
√
n
(
L̂p(I)− L(I)

)
=
√
n
(
R̂p(I)−R(I)

)
+ 1√

n
(s11 − s21)

d−−−→
n→∞

N
(
0, 4(s32 − s2

21)
)
.

Let I, J be two partitions in I, then I is called a subdivision of J and we denote I E J , if

FJ ⊂ FI and I 5 J otherwise.

Lemma 2.3. Suppose that function f belongs to Fδ. Let us consider mmax large enough such

that δ > 21−mmax . Define N = 2mmax and I(N) = (N,λN ) ∈ I with λN = dN(1 − δe/N . Then

for every partition I ∈ I, we have

i) If I is a subdivision of I(N), then L(I) = L(I(N)).

ii) If I is not a subdivision of I(N), then L(I) > L(I(N)).

We are now ready to prove Theorem 2.3, starting by establishing point i). First, we remark

that under condition (2.7), Celisse and Robin prove in their Proposition 2.1 that

p̂(I)

n

a.s.−−−→
n→∞

l∞(I) ∈ [0, 1).

Denoting by Λ? = [1− δ, 1] and Λ̂ = [λ̂, 1], we may write

θ̂CRn = θ +
∑

I=(N,λ)EI(N)

[
1

n(1− λ)

n∑
i=1

1{Xi ∈ [λ, 1]} − θ

]
1{λ̂ = λ}+ (θ̂CRn − θ)1Î5I(N) , (2.22)

where N = 2mmax as in Lemma 2.3. For each partition I = (N,λ) E I(N), we have [λ, 1] ⊆ Λ?.

By applying the strong law of large numbers we get that

1

n(1− λ)

n∑
i=1

1{Xi ∈ [λ, 1]} a.s.−−−→
n→∞

P(Xi ∈ [λ, 1])

1− λ
= θ.
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Since the cardinality card(I) of I is finite and does not depend on n, in order to finish the proof,

it is sufficient to establish that

(θ̂CRn − θ)1Î5I(N)

a.s.−−−→
n→∞

0.

Using Lemma 2.3, we have L(Î) > L(I(N)). Let

γ = min
I5I(N)

L(I)− L(I(N)) > 0, (2.23)

we obtain that

|θ̂CRn − θ|1Î5I(N) ≤ (N − θ)1{L(Î)− L(I(N)) ≥ γ} ≤

(N − θ)1{|L̂p̂(Î)(Î)− L(Î)|+ |L̂p̂(IN )(I
N )− L(IN )|+ L̂p̂(Î)(Î)− L̂p̂(I(N))(I

(N)) ≥ γ}

≤ (N − θ)1{2sup
I∈I
|L̂p̂(I)(I)− L(I)|+ L̂p̂(Î)(Î)− L̂p̂(I(N))(I

(N)) ≥ γ}.

By definition of Î, we have L̂p̂(Î)(Î)− L̂p̂(I(N))(I
(N)) ≤ 0, so that

|θ̂CRn − θ|1Î5I(N) ≤ (N − θ)1{sup
I∈I
|L̂p̂(I)(I)− L(I)| ≥ γ

2
} (2.24)

≤ (N − θ)
∑
I∈I

1{|L̂p̂(I)(I)− L(I)| ≥ γ

2
}.

Since ∀I ∈ I, we both have L̂p(I)
a.s.−−−→
n→∞

L(I) and p̂(I)/n
a.s.−−−→
n→∞

l∞(I) ∈ [0, 1) as well as the

fact that R̂p(I) (given by (2.6)) is a continuous function of p/n, we obtain L̂p̂(I)(I)
a.s.−−−→
n→∞

L(I).

Therefore,

1{|L̂p̂(I)(I)− L(I)| ≥ γ

2
} a.s.−−−→

n→∞
0.

Indeed, if Xn
a.s.−−→ X then ∀ε > 0, we have 1{|Xn − X| ≥ ε} a.s.−−→ 0. It thus follows that

(θ̂CRn − θ)1Î5I(N)

a.s.−−→ 0. We finally get that θ̂CRn
a.s.−−→ θ.

We now turn to point ii). We may write as previously,

√
n(θ̂CRn − θ) =

∑
I=(N,λ)EI(N)

√
n
[ 1

n(1− λ)

n∑
i=1

1{Xi ∈ [λ, 1]} − θ
]
1{λ̂=λ}

+
√
n(θ̂CRn − θ)1{Î5I(N)}.

For each partition I = (N,λ) E I(N), by applying the central limit theorem, we get that

√
n
[ 1

n(1− λ)

n∑
i=1

1Xi∈[λ,1] − θ
] d−−−→
n→∞

N
(

0, θ
( 1

1− λ
− θ
))
.
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Hence, using again that card(I) is finite,

∑
I=(N,λ)EI(N)

√
n
[ 1

n(1− λ)

n∑
i=1

1Xi∈[λ,1] − θ
]
1λ̂=λ = OP(1). (2.25)

We shall now prove that
√
n(θ̂CRn − θ)1Î5I(N)

P−−−→
n→∞

0. In fact, according to (2.24), for all ε > 0,

we have

P(
√
n|θ̂CRn − θ|1Î5I(N) > ε) ≤ P(Î 5 I(N))

≤ P(sup
I∈I
|L̂p̂(I)(I)− L(I)| ≥ γ

2
)

≤
∑
I∈I

P(|L̂p̂(I)(I)− L(I)| ≥ γ

2
) −−−→
n→∞

0,

where γ is defined by (2.23). Therefore,
√
n(θ̂CRn − θ)1Î5I(N) = oP(1). We finally conclude that

√
n(θ̂CRn − θ) = OP(1).

We now prove the last statement iii) of the proposition. We have

E
[
(
√
n(θ̂CRn − θ))2

]
=

∑
I=(N,λ)EI(N)

E
[ 1

n

( n∑
i=1

( 1

1− λ
1{Xi ∈ [λ, 1]} − θ

))2
1{λ̂=λ}

]
+E
[
(
√
n(θ̂CRn − θ))21{Î 5 I(N)}

]
.

The first term of the above equation is bounded as in the proof of Proposition 2.2 (see inequali-

ties (2.20) and (2.21))

∑
I=(N,λ)EI(N)

E
[ 1

n

( n∑
i=1

( 1

1− λ
1{Xi ∈ [λ, 1]} − θ

))2
1{λ̂=λ}

]

≤

√√√√ ∑
I=(N,λ)EI(N)

[ θ
n

( 1

(1− λ)3
− 4θ

(1− λ)2
+

6θ2

1− λ
− 3θ3

)
+
n− 1

n
θ2
( 1

(1− λ)
− θ
)2]

.

The second term is bounded by

E
[
(
√
n(θ̂CRn − θ))21{Î 5 I(N)}

]
≤ (N − θ)2nP(Î 5 I(N))

≤ (N − θ)2nP(sup
I∈I
|L̂p(I)− L(I)| ≥ γ

2
)

≤ (N − θ)2n
∑
I∈I

P(|L̂p(I)− L(I)| ≥ γ

2
).
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For each partition I ∈ I, according to the calculations in the proof of Lemma 2.1, we have

L̂p(I)− L(I) =
2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
+ s21

=
2n− p

(n− 1)(n− p)

{∑
k

1

|Ik|

(nk
n
− αk

)
+ s11 − s21

}
− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|

(nk
n
− αk

)2

− 2n(n− p+ 1)

(n− 1)(n− p)
∑
k

αk
|Ik|

(nk
n
− αk

)
.

This leads to

P(|L̂p(I)− L(I)| ≥ γ

2
) ≤ P

(∣∣∣∑
k

1

|Ik|

(nk
n
− αk

)∣∣∣ ≥ (n− 1)(n− p)γ
6(2n− p)

− |s21 − s11|
)

+ P
(∑

k

1

|Ik|

(nk
n
− αk

)2
≥ (n− 1)(n− p)γ

6n(n− p+ 1)

)
+ P

(∣∣∣∑
k

αk
|Ik|

(nk
n
− αk

)∣∣∣ ≥ (n− 1)(n− p)γ
12n(n− p+ 1)

)
.

According to Hoeffding’s inequality, we have

P
(∣∣∣∑

k

1

|Ik|

(nk
n
− αk

)∣∣∣ ≥ (n− 1)(n− p)γ
6(2n− p)

− |s21 − s11|
)

= P
(∣∣∣ n∑

i=1

∑
k

1

|Ik|

(
1{Xi ∈ Ik} − αk

)∣∣∣ ≥ n(n− 1)(n− p)γ
6(2n− p)

− n|s21 − s11|
)

≤ 2 exp
[
− 2n

(∑
k

1

|Ik|

)−2((n− 1)(n− p)γ
6(2n− p)

− |s21 − s11|
)2]

,

as well as

P
(∣∣∣∑

k

αk
|Ik|

(nk
n
− αk

)∣∣∣ ≥ (n− 1)(n− p)γ
12n(n− p+ 1)

)
≤ 2 exp

[
− 2ns−2

11

((n− 1)(n− p)γ
12n(n− p+ 1)

)2]
,

and

P
(∣∣∣∑

k

1

|Ik|

(nk
n
− αk

)2∣∣∣ ≥ (n− 1)(n− p)γ
6n(n− p+ 1)

)
≤

∑
k

P
(∣∣∣ n∑

i=1

(
1{Xi ∈ Ik} − αk

)∣∣∣2 ≥ |Ik|n(n− 1)(n− p)γ
6D(n− p+ 1)

)
≤ 2 exp

[
− 2
( |Ik|(n− 1)(n− p)γ

6D(n− p+ 1)

)]
.

Hence, we obtain that nP(|L̂p(I)−L(I)| ≥ γ
2 ) −−−−−→

n→+∞
0. Finally, we conclude that lim sup

n→∞
nE
[
(θ̂CRn −

θ)2
]
< +∞.
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2.6 Proofs of technical lemmas

2.6.1 Proof of Lemma 2.1

Note that Celisse and Robin [2010] prove that E[||g−ĝI ||22] −−−→
n→∞

0, while we further establish

that it is O(1/n). By a simple bias-variance decomposition, we may write

E[||gI − ĝI ||22] = E[||g − ĝI ||22]− ||gI − g||22.

As for the bias term, it is easy to show that

||g − gI ||22 = inf
(ak)k∈R

[
||g||22 − 2

∫ 1

0

(∑
k

ak1Ik(x)
)
g(x)dx+

∫ 1

0

(∑
k

ak1Ik(x)
)2
dx
]

= inf
(ak)k∈R

[
||g||22 − 2

∑
k

akαk +
∑
k

a2
k|Ik|

]
= ||g||22 −

∑
k

α2
k

|Ik|
= ||g||22 − s21. (2.26)

Let us now calculate the mean squared error of ĝI

E[||g − ĝI ||22] = ||g||22 + E
[
||ĝI ||22 − 2

∫ 1

0
ĝI(x)g(x)dx

]
= ||g||22 + E

[ ∫ 1

0

(∑
k

nk
n|Ik|

1Ik(x)
)2
dx− 2

∫ 1

0

∑
k

nk
n|Ik|

1Ik(x)g(x)dx
]

= ||g||22 + E
[∑

k

n2
k

n2|Ik|
− 2

∑
k

nkαk
n|Ik|

]
.

Since nk follows a Binomial distribution B(n, αk), we have

E[nk] = nαk and E[n2
k] = n2α2

k + nαk(1− αk).

Therefore,

E[||g − ĝI ||22] = ||g||22 +
∑
k

n2α2
k + nαk(1− αk)

n2|Ik|
− 2

∑
k

nα2
k

n|Ik|

= ||g||22 − s21 +
1

n
(s11 − s21). (2.27)

Using (2.26) and (2.27), we obtain the desired result, namely

E[||gI − ĝI ||22] = E[||g − ĝI ||22]− ||gI − g||22 =
1

n
(s11 − s21) = O

( 1

n

)
.
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2.6.2 Proof of Lemma 2.2

i) Since

lim
n→∞

p

n
< 1 and

nk
n

a.s.−−−→
n→∞

αk, for all k,

we obtain that

L̂p(I) = ||g||22 +
2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
a.s.−−−→
n→∞

||g||22 −
∑
k

α2
k

|Ik|
= ||g||22 − s21 = ||gI − g||22 = L(I).

ii) By definition of R(I) and using (2.27), we have

R(I) = E[||g − ĝI ||22]− ||g||22 = −s21 +
1

n
(s11 − s21).

This gives that
√
n[R̂p(I)−R(I)] =

√
n
[ 2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
+s21 −

1

n
(s11 − s21)

]
=

2n− p
(n− 1)(n− p)

∑
k

1

|Ik|
[√
n
(nk
n
− αk

)]
+

(2n− p)
√
n

(n− 1)(n− p)
s11

− n(n− p+ 1)√
n(n− 1)(n− p)

∑
k

1

|Ik|
[√
n
(nk
n
− αk

)]2 − (2n− p)
√
n

(n− 1)(n− p)
s21

− 2n(n− p+ 1)

(n− 1)(n− p)
∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)]
− 1√

n
(s11 − s21)

= T1 −
2n(n− p+ 1)

(n− 1)(n− p)
∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)]
. (2.28)

Then, using the central limit theorem and the continuity of the function x 7→ x2, we have
√
n
(nk
n
− αk

) d−−−→
n→∞

N (0, αk(1− αk)),[√
n
(nk
n
− αk

)]2 d−−−→
n→∞

Z2
k with Zk ∼ N (0, αk(1− αk)).

It thus follows that T1 = oP(1). We now consider the remaining term in (2.28). We have∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)]
=

1√
n

∑
k

αk
|Ik|

nk −
√
n
∑
k

α2
k

|Ik|

=
1√
n

∑
k

αk
|Ik|
( n∑
i=1

1Xi∈Ik
)
−
√
n s21

=
1√
n

n∑
i=1

(∑
k

αk
|Ik|

1Xi∈Ik − s21

)
.
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Let us denote

Yi =
∑
k

αk
|Ik|

1Xi∈Ik − s21.

Then the random variables Y1, Y2, . . . , Yn are iid centered with variance

σ2
I = E(Y 2

1 ) = E
(∑

k

α2
k

|Ik|2
1X1∈Ik − 2s21

∑
k

αk
|Ik|

1X1∈Ik + s2
21

)
= s32 − s2

21.

By the central limit theorem, we obtain∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)] d−−−→
n→∞

N (0, σ2
I ).

Combining this with (2.28) implies that

√
n[R̂p(I)−R(I)]

d−−−→
n→∞

N (0, 4σ2
I ).

It is easy to calculate that

√
n
(
L̂p(I)− L(I)

)
=
√
n
(
R̂p(I)−R(I)

)
+

1√
n

(s11 − s21).

Hence, we have
√
n[L̂p(I)− L(I)]

d−−−→
n→∞

N (0, 4σ2
I ),

which completes the proof.

2.6.3 Proof of Lemma 2.3

i) Let us denote by λ? = 1−δ. If I is a subdivision of I(N), then I = (N,λ) with [λ, 1] ⊂ [λ?, 1].

For example, we may have the following situation

r0 λNλ? 1
I(N)

r0 λN λλ? 1
I

Since g is constant on the interval [λ?, 1] ⊃ [λN , 1] ⊃ [λ, 1], we have gI = gI(N) = g on the

interval [λN , 1]. This implies that ||gI − g||22 = ||gI(N) − g||22.

ii) If I = (2m, λ) is not a subdivision of I(N), then there are two cases to consider:

If m = mmax then [λ, 1] * [λN , 1]. For example, we may have
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r0 λNλ? 1
I(N)

r r0 λNλ λ? 1
I

Since gI(N) = g on the interval [λN , 1] and the two partitions I and I(N) restricted to the

interval [0, λ] are the same, we thus have

||gI − g||22,[0,λ] = ||gI(N) − g||22,[0,λ],

and

||gI − g||22 − ||gI(N) − g||22 = ||gI − g||22,[λ,1] − ||gI(N) − g||22,[λ,λN ]

= (λN − λ)(a− b)2 + (1− λN )(a− θ)2,

where

a =
1

1− λ

∫ 1

λ
g(x)dx, b =

1

λN − λ

∫ λN

λ
g(x)dx.

Using the assumption that f ∈ Fδ, we get that L(I) > L(I(N)). If m < mmax, we may have for

example

r0 λNλ? 1
I(N)

r r0 λNλ λ? 1
I

As before, we may show that

||gI − g||22 − ||gI(N) − g||22 ≥ ||gI − g||22,[0,λ] − ||gI(N) − g||22,[0,λ] > 0,

which completes the proof.
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Chapter 3

Estimation of the density of the
alternative

Abstract

In a multiple testing context, we consider a semiparametric mixture model with

two components where one component is known and corresponds to the distribution

of p-values under the null hypothesis and the other component f is nonparametric

and stands for the distribution under the alternative hypothesis. Motivated by the

issue of local false discovery rate estimation, we focus here on the estimation of

the nonparametric unknown component f in the mixture, relying on a preliminary

estimator of the unknown proportion θ of true null hypotheses. We propose and study

the asymptotic properties of two different estimators for this unknown component.

The first estimator is a randomly weighted kernel estimator. We establish an upper

bound for its pointwise quadratic risk, exhibiting the classical nonparametric rate

of convergence over a class of Hölder densities. To our knowledge, this is the first

result establishing convergence as well as corresponding rate for the estimation of

the unknown component in this nonparametric mixture. The second estimator is

a maximum smoothed likelihood estimator. It is computed through an iterative

algorithm, for which we establish a descent property. In addition, these estimators

are used in a multiple testing procedure in order to estimate the local false discovery

rate. Their respective performances are then compared on synthetic data.
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3.1. INTRODUCTION

3.1 Introduction

In the framework of multiple testing problems (microarray analysis, neuro-imaging, etc), a

mixture model with two populations is considered

∀x ∈ Rd, g(x) = θφ(x) + (1− θ)f(x), (3.1)

where θ is the unknown proportion of true null hypotheses, φ and f are the densities of the

observations generated under the null and alternative hypotheses, respectively. More precisely,

assume the test statistics are independent and identically distributed (iid) with a continuous

distribution under the corresponding null hypotheses and we observe the p-values X1, X2, . . . , Xn

associated with n independent tested hypotheses, then the density function φ is the uniform

distribution on [0, 1] while the density function f is assumed unknown. The parameters of the

model are (θ, f), where θ is a Euclidean parameter while f is an infinite-dimensional one and

the model becomes

∀x ∈ [0, 1], g(x) = θ + (1− θ)f(x). (3.2)

In the following, we focus on model (3.2) that is slightly simpler than (3.1). A central problem

in the multiple testing setup is the control of type I (i.e. false positive) and type II (i.e. false

negative) errors. The most popular criterion regarding type I errors is the false discovery rate

(FDR), proposed by Benjamini and Hochberg [1995]. To set up the notation, let Hi be the i-th

(null) hypothesis. The outcome of testing n hypotheses simultaneously can be summarized as

indicated in Table 3.1.

Table 3.1: Possible outcomes from testing n hypotheses H1, . . . ,Hn.
Accepts Hi Rejects Hi Total

Hi is true TN FP n0

Hi is false FN TP n1

Total N P n

Benjamini and Hochberg [1995] define FDR as the expected proportion of rejections that are

incorrect,

FDR = E
[ FP

max(P, 1)

]
= E

[FP
P
∣∣P > 0

]
P(P > 0).

They provide a multiple testing procedure that guarantees the bound FDR ≤ α, for a desired

level α. Storey [2003] proposes to modify FDR so as to obtain a new criterion, the positive FDR

(or pFDR), defined by

pFDR = E
[FP
P
∣∣P > 0

]
,
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and argues that it is conceptually more sound than FDR. For microarray data for instance, there

is a large value of the number of hypotheses n and the difference between pFDR and FDR is

generally small as the extra factor P(P > 0) is very close to 1 [see Liao et al., 2004]. In a mixture

context, the pFDR is given by

pFDR(x) = P(Hi being true |X ≤ x) =
θΦ(x)

θΦ(x) + (1− θ)F (x)
,

where Φ and F are the cumulative distribution functions (cdfs) for densities φ and f , respectively.

(It is notationally convenient to consider events of the form X ≤ x, but we could just as well

consider tail areas to the right, two-tailed events, etc).

Efron et al. [2001] define the local false discovery rate (`FDR) to quantify the plausibility

of a particular hypothesis being true, given its specific test statistic or p-value. In a mixture

framework, the `FDR is the Bayes posterior probability

`FDR(x) = P(Hi being true |X = x) = 1− (1− θ)f(x)

θφ(x) + (1− θ)f(x)
. (3.3)

In many multiple testing frameworks, we need information at the individual level about the

probability for a given observation to be a false positive [Aubert et al., 2004]. This motivates

estimating the local false discovery rate `FDR. Moreover, the quantities pFDR and `FDR are

analytically related by pFDR(x) = E[`FDR(X)|X ≤ x]. As a consequence (and recalling that

the difference between pFDR and FDR is generally small), Robin et al. [2007] propose to estimate

FDR by

F̂DR(xi) =
1

i

i∑
j=1

`̂FDR(xj),

where `̂FDR is an estimator of `FDR and the observations {xi} are increasingly ordered. A

natural strategy to estimate `FDR is to start by estimating both the proportion θ and either

f or g. Another motivation for estimating the parameters in this mixture model comes from

the works of Sun and Cai (2009, 2007), who develop adaptive compound decision rules for false

discovery rate control. These rules are based on the estimation of the parameters in model (3.1)

(dealing with z-scores) rather than model (3.2) (dealing with p-values). However, it appears that

in some very specific cases (when the alternative is symmetric about the null), the oracle version

of their procedure based on the p-values (and thus relying on estimators of the parameters in

model (3.2)) may outperform the one based on model (3.1) [see Sun and Cai, 2007, for more

details]. In the following, we are thus interested in estimating parameters in model (3.2).
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In a previous work [Nguyen and Matias, 2012], we discussed the estimation of the Euclidean

part of the parameter θ in model (3.2). Thus, we will not consider further this point here. We

rather focus on the estimation of the unknown density f , relying on a preliminary estimator of

θ. We just mention that many estimators of θ have been proposed in the literature. One of

the most well-known is the one proposed by Storey [2002], motivating its use in our simulations.

Some of these estimators are proved to be consistent (under suitable model assumptions). Of

course, we will need some specific properties of estimators θ̂n of θ to obtain rates of convergence

of estimators of f . Besides, existence of estimators θ̂n satisfying those specific properties is a

consequence of Nguyen and Matias [2012].

Now, different modeling assumptions on the marginal density f have been proposed in the

literature. For instance, parametric models have been used with Beta distribution for the p-

values [see for example Allison et al., 2002, Liao et al., 2004, Pounds and Morris, 2003] or

Gaussian distribution of the probit transformation of the p-values [McLachlan et al., 2006].

In the framework of nonparametric estimation, Strimmer [2008] proposed a modified Grenander

density estimator for f , which has been initially suggested by Langaas et al. [2005]. This approach

requires monotonicity constraints on the density f . Other nonparametric approaches consist in

relying on regularity assumptions on f . This is done for instance in Neuvial [2010], who is

primarily interested in estimating θ under the assumption that it is equal to g(1). Relying

on a kernel estimator of g, he derives nonparametric rates of convergence for θ. Another kernel

estimator has been proposed by Robin et al. [2007], along with a multiple testing procedure, called

kerfdr. This iterative algorithm is inspired by an expectation-maximization (em) procedure

[Dempster et al., 1977]. It is proved to be convergent as the number of iterations increases.

However, it does not optimize any criterion and contrarily to the original em algorithm, it does

not increase the observed data likelihood function. Besides, the asymptotic properties (with the

number of hypotheses n) of the kernel estimator underlying Robin et al.’s approach have not

been studied. Indeed, its iterative form prevents from obtaining any theoretical result on its

convergence properties.

The first part of the present work focuses on the properties of a randomly weighted kernel

estimator, which in essence, is very similar to the iterative approach proposed by Robin et al.

[2007]. Thus, this part may be viewed as a theoretical validation of kerfdr approach that gives

some insights about the convergence properties (as the sample size increases) of this method. In

particular, we establish that relying on a preliminary estimator of θ that roughly converges at
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parametric rate (see exact condition in Corollary 3.1), we obtain an estimator of the unknown

density f that converges at the usual minimax nonparametric rate. To our knowledge, this is

the first result establishing convergence as well as corresponding rate for the estimation of the

unknown component in model (3.2). In a second part, we are interested in a new iterative algo-

rithm for estimating the unknown density f , that aims at maximizing a smoothed likelihood. We

refer to Paragraph 4.1 in Eggermont and LaRiccia [2001] for an interesting presentation of kernel

estimators as maximum smoothed likelihood ones. Here, we base our approach on the work

of Levine et al. [2011], who study a maximum smoothed likelihood estimator for multivariate

mixtures. The main idea consists in introducing a nonlinear smoothing operator on the unknown

component f as proposed in Eggermont and LaRiccia [1995]. We prove that the resulting algo-

rithm possesses a desirable descent property, just as an em algorithm does. We also show that it

is competitive with respect to kerfdr algorithm, both when used to estimate f or `FDR.

The article is organized as follows. In Section 3.2, we start by describing different procedures

to estimate f . We distinguish two types of procedures and first describe direct (non iterative) ones

in Section 3.2.1. We mention a direct naive approach but the main procedure from this section is

a randomly weighted kernel estimator. Then, we switch to iterative procedures (Section 3.2.2).

The first one is not new: kerfdr has been proposed in Guedj et al. [2009], Robin et al. [2007].

The second one, called msl, is new and adapted from the work of Levine et al. [2011] in a different

context (multivariate mixtures). These iterative procedures are expected to be more accurate

than direct ones, but their properties are in general more difficult to establish. As such, the direct

randomly weighted kernel estimator from Section 3.2.1 may be viewed as a proxy for studying the

convergence properties (with respect to f) of kerfdr procedure (properties that are unknown).

Section 3.3 then gives the theoretical properties of the procedures described in Section 3.2. In

particular, we establish (Theorem 3.1) an upper bound on the pointwise quadratic risk of the

randomly weighted kernel procedure. Moreover, we prove that msl procedure possesses a descent

property with respect to some criterion (Proposition 3.1). In Section 3.4, we rely on our different

estimators to estimate both density f and the local false discovery rate `FDR. We present

simulated experiments to compare their performances. All the proofs have been postponed

to Section 3.5. Moreover, some of the more technical proofs have been further postponed to

Section 3.6.
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3.2 Algorithmic procedures to estimate the density f

3.2.1 Direct procedures

Let us be given a preliminary estimator θ̂n of θ as well as a nonparametric estimator ĝn of g.

We propose here to rely on a kernel estimator of the density g

ĝn(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
=

1

n

n∑
i=1

Ki,h(x), (3.4)

where K is a kernel (namely a real-valued integrable function such that
∫
K(u)du = 1), h > 0

is a bandwidth (both are to be chosen later) and

Ki,h(·) =
1

h
K
( · −Xi

h

)
. (3.5)

Note that this estimator of g is consistent under appropriate assumptions.

A naive approach. From Equation (3.2), it is natural to propose to estimate f with

f̂naive
n (x) =

ĝn(x)− θ̂n
1− θ̂n

1{θ̂n 6=1},

where 1A is the indicator function of set A. This estimator has the same theoretical properties as

the randomly weighted kernel estimator presented below. However, it is much worse in practice,

as we shall see in the simulations of Section 3.4.

A randomly weighted kernel estimator. We now explain a natural construction for an

estimator of f relying on a randomly weighted version of a kernel estimator of g. For any

hypothesis, we introduce a (latent) random variable Zi that equals 0 if the null hypothesis Hi is

true and 1 otherwise,

∀i = 1, . . . , n Zi =

{
0 if Hi is true,
1 otherwise. (3.6)

Intuitively, it would be convenient to introduce a weight for each observation Xi, meant to select

this observation only if it comes from f . Equivalently, the weights are used to select the indexes

i such that Zi = 1. Thus, a natural kernel estimate of f would be

f1(x) =
1

h

n∑
i=1

Zi∑n
k=1 Zk

K
(x−Xi

h

)
=

n∑
i=1

Zi∑n
k=1 Zk

Ki,h(x), x ∈ [0, 1].

However, f1 is not an estimator and cannot be directly used since the random variables Zi are not

observed. A natural approach [initially proposed in Robin et al., 2007] is to replace them with
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their conditional expectation given the data {Xi}1≤i≤n, namely with the posterior probabilities

τ(Xi) = E(Zi|Xi) defined by

∀x ∈ [0, 1], τ(x) = E(Zi|Xi = x) =
(1− θ)f(x)

g(x)
= 1− θ

g(x)
. (3.7)

This leads to the following definition

∀x ∈ [0, 1], f2(x) =

n∑
i=1

τ(Xi)∑n
k=1 τ(Xk)

Ki,h(x). (3.8)

Once again, the weight τi = τ(Xi) depends on the unknown parameters θ and f and thus f2 is

not an estimator but rather an oracle. To solve this problem, Robin et al. [2007] proposed an

iterative approach, called kerfdr and discussed below, to approximate (3.8). For the moment,

we propose to replace the posterior probabilities τi by direct (rather than iterative) estimators

to obtain a randomly weighted kernel estimator of f . Specifically, we propose to estimate the

posterior probability τ(x) by

∀x ∈ [0, 1], τ̂(x) = 1− θ̂n
ĝn(x)

. (3.9)

Then, by defining the weight

τ̂i = τ̂(Xi) = 1− θ̂n
g̃n(Xi)

, where g̃n(Xi) =
1

(n− 1)

n∑
j 6=i

Kj,h(Xi), (3.10)

we get a randomly weighted kernel estimator of the density f defined as

∀x ∈ [0, 1], f̂ rwk
n (x) =

n∑
i=1

τ̂i∑n
k=1 τ̂k

Ki,h(x). (3.11)

Note that it is not necessary to use the same kernel K in defining ĝn and f̂ rwk
n , nor the same

bandwidth h. In practice, we rely on the same kernel chosen with a compact support (to avoid

boundary effects) and as we will see in Section 3.3, the bandwidths have to be chosen of the

same order. Also note that the slight modification from ĝn to g̃n in defining the weights (3.10)

is minor and used in practice to reduce the bias of g̃n(Xi).

3.2.2 Iterative procedures

In this section, we still rely on a preliminary estimator θ̂n of θ. Two different procedures

are described: kerfdr algorithm, proposed by Guedj et al. [2009], Robin et al. [2007] and a

maximum smoothed likelihood msl estimator, inspired from the work of Levine et al. [2011] in
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the context of multivariate nonparametric mixtures. Both rely on an iterative randomly weighted

kernel approach. The general form of these procedures is described by Algorithm 1. The main

difference between the two procedures lies in the choice of the functions K̃i,h (that play the role

of a kernel) and the way the weights are updated.

Algorithm 1: General structure of the iterative algorithms
// Initialization;
Set initial weights ω̂0

i ∼ U
(
[0, 1]

)
, i = 1, 2, . . . , n.

while maxi |ω̂(s)
i − ω̂

(s−1)
i |/ω̂(s−1)

i ≥ ε do

// Update estimation of f ;
f̂ (s)(xi) =

∑
j ω̂

(s−1)
j K̃j,h(xi)/

∑
k ω̂

(s−1)
k

// Update of weights;
ω̂

(s)
i : depends on the procedure, see Equations (3.12) and (3.14)

s← s+ 1;

// Return;
f̂ (s)(·) =

∑
i ω̂

(s−1)
i K̃i,h(·)/

∑
k ω̂

(s−1)
k

Note that the parameter θ is fixed throughout these iterative procedures. Indeed, as already

noted by Robin et al. [2007], the solution θ = 0 is a fixed point of a modified kerfdr algorithm

where θ would be iteratively updated. This is also the case with the maximum smoothed likeli-

hood procedure described below in the particular setup of model (3.2). This is why we keep θ

fixed in both procedures. We now describe more explicitly the two procedures.

Kerfdr algorithm. This procedure has been proposed by Guedj et al. [2009], Robin et al.

[2007] as an approximation to the estimator suggested by (3.8). In this procedure, functions K̃i,h

more simply denoted Ki,h are defined through (3.5) where K is a kernel (namely
∫
K(u)du = 1)

and following (3.7), the weights are updated as follows

ω̂
(s)
i =

(1− θ̂n)f̂ (s)(xi)

θ̂n + (1− θ̂n)f̂ (s)(xi)
. (3.12)

This algorithm has some em flavor [Dempster et al., 1977]. Actually, updating the weights

ω̂
(s)
i is equivalent to expectation-step, and f̂ (s)(x) can be seen as an average of {Ki,h(x)}1≤i≤n

so that updating the estimator f̂ may look like a maximization-step. However, as noted in Robin
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et al. [2007], the algorithm does not optimize any given criterion. Besides, it does not increase

the observed data likelihood function.

The relation between f̂ (s) and ω̂(s) implies that the sequence {ω̂(s)}s≥0 satisfies ω̂(s) =

ψ(ω̂(s−1)), where

ψ : [0, 1]n\{0} → [0, 1]n, ψi(u) =

∑
i uibij∑

i uibij +
∑

i ui
, with bij =

1− θ̂n
θ̂n

×
Ki,h(xj)

φ(xj)
.

Thus, if the sequence {ω̂(s)}s≥0 is convergent, it has to converge towards a fixed point of ψ.

Robin et al. [2007] prove that under some mild conditions, kerfdr estimator is self-consistent,

meaning that as the number of iterations s increases, the sequence f̂ (s) converges towards the

function

f3(x) =
n∑
i=1

ω̂∗i∑
k ω̂
∗
k

Ki,h(x),

where ω̂∗i is the (unique) limit of {ω̂(s)
i }s≥0. Note that contrarily to f2, function f3 is a randomly

weighted kernel estimator of f . However, nothing is known about the convergence of f3 nor f̂ (s)

towards the true density f when the sample size n tends to infinity (while the bandwidth h = hn

tends to 0). Indeed, the weights {ω̂(s)
i }s≥0 used by the kernel estimator f̂ (s) form an iterative

sequence. Thus it is very difficult to study the convergence properties of this weight sequence or

of the corresponding estimator.

We thus propose another randomly weighted kernel estimator, whose weights are slightly

different from those used in the construction of f̂ (s). More precisely, those weights are not

defined iteratively but they mimic the sequence of weights {ω̂(s)
i }s≥0.

Maximum smoothed likelihood estimator. Following the lines of Levine et al. [2011], we

construct an iterative estimator sequence of the density f that relies on the maximisation of a

smoothed likelihood. Assume in the following that K is a positive and symmetric kernel on R.

We define its rescaled version as

Kh(x) = h−1K(h−1x).

We consider a linear smoothing operator S : L1([0, 1])→ L1([0, 1]) defined as

Sf(x) =

∫ 1

0

Kh(u− x)f(u)∫ 1
0 Kh(s− u)ds

du, for all x ∈ [0, 1].
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We remark that if f is a density on [0, 1] then Sf is also a density on [0, 1]. Let us consider a

submodel of model (3.2) restricted to densities f ∈ F with

F = {densities f on [0, 1] such that log f ∈ L1([0, 1])}.

We denote by S∗ : L1([0, 1])→ L1([0, 1]) the operator

S∗f(x) =

∫ 1
0 Kh(u− x)f(u)du∫ 1

0 Kh(s− x)ds
.

Note the difference between S and S∗. The operator S∗ is in fact the adjoint operator of S. Here,

we rely more specifically on the earlier work of Eggermont [1999] that takes into account the

case where the density support ([0, 1] in our case) is different from the kernel support (usually

R). Indeed in this case, the normalisation terms introduce a difference between S and S∗. Then

for a density f ∈ F , we approach it by a nonlinear smoothing operator N defined as

N f(x) = exp{(S∗(log f))(x)}, x ∈ [0, 1].

Note that N f is not necessarily a density. Now, the maximum smoothed likelihood procedure

consists in applying Algorithm 1, relying on

K̃i,h(x) =
Ki,h(x)∫ 1

0 Ki,h(s)ds
, (3.13)

where Ki,h is defined through (3.5) relying on a positive symmetric kernel K and

ω̂
(s)
i =

(1− θ̂n)N f̂ (s)(xi)

θ̂n + (1− θ̂n)N f̂ (s)(xi)
. (3.14)

In Section 3.3.2, we explain where these choices come from and why this procedure corresponds

to a maximum smoothed likelihood approach. Let us remark that as in kerfdr algorithm, the

sequence of weights {ω̂(s)}s≥0 also satisfies ω̂(s) = ϕ(ω̂(s−1)) for some specific function ϕ. Then,

if the sequence {ω̂(s)}s≥0 is convergent, it must be convergent to a fixed point of ϕ. Existence

and uniqueness of a fixed point for msl algorithm is explored below in Proposition 3.2.

In the following section, we thus establish theoretical properties of the procedures presented

here. These are then further compared on simulated data in Section 3.4.

3.3 Mathematical properties of the algorithms

3.3.1 Randomly weighted kernel estimator

We provide below the convergence properties of the estimator f̂ rwk
n defined through (3.11).

In fact, these naturally depend on the properties of the plug-in estimators θ̂n and ĝn. We are
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interested here in controlling the pointwise quadratic risk of f̂ rwk
n . This is possible on a class of

densities f that are regular enough. In the following, we denote by Pθ,f and Eθ,f the probability

and corresponding expectation in the more specific model (3.2). Moreover, bxc denotes the

largest integer strictly smaller than x. Now, we recall that the order of a kernel is defined as

its first nonzero moment [Tsybakov, 2009] and we recall below the definition of Hölder classes of

functions.

Definition 3.1. Fix β > 0, L > 0 and denote by H(β, L) the set of functions ψ : [0, 1]→ R that

are l-times continuously differentiable on [0, 1] with l = bβc and satisfy

|ψ(l)(x)− ψ(l)(y)| ≤ L|x− y|β−l, ∀x, y ∈ [0, 1].

The set H(β, L) is called the (β, L)-Hölder class of functions.

We denote by Σ(β, L) the set

Σ(β, L) =
{
ψ : ψ is a density on [0, 1] and ψ ∈ H(β, L)

}
.

According to the proof of Theorem 1.1 in Tsybakov [2009], we remark that

sup
ψ∈Σ(β,L)

‖ψ‖∞ < +∞.

In order to obtain the rate of convergence of f̂ rwk
n to f , we introduce the following assumptions

(A1) The kernel K is a right-continuous function.

(A2) K is of bounded variation.

(A3) The kernel K is of order l = bβc and satisfies∫
K(u)du = 1,

∫
K2(u)du <∞, and

∫
|u|β|K(u)|du <∞.

(B1) f is a uniformly continuous density function.

(C1) The bandwidth h is of order αn−1/(2β+1), α > 0.

Note that there exist kernels satisfying Assumptions (A1)-(A3) [see for instance Section 1.2.2

in Tsybakov, 2009]. Note also that if f ∈ Σ(β, L), it automatically satisfies Assumption (B1).
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Remark 3.1. i) We first remark that if kernel K satisfies Assumptions (A1), (A2) and if

Assumptions (B1) and (C1) hold, then the kernel density estimator ĝn defined by (3.4)

converges uniformly almost surely to g [Wied and Weißbach, 2012]. In other words

‖ĝn − g‖∞
a.s−−−→

n→∞
0.

ii) If kernel K satisfies Assumption (A3) and if Assumption (C1) holds, then for all n ≥ 1

sup
x∈[0,1]

sup
f∈Σ(β,L)

Eθ,f (|ĝn(x)− g(x)|2) ≤ Cn
−2β
2β+1 ,

where C = C(β, L, α,K) [see Theorem 1.1 in Tsybakov, 2009].

In the following theorem, we give the rate of convergence to zero of the pointwise quadratic

risk of f̂ rwk
n .

Theorem 3.1. Assume that kernel K satisfies Assumptions (A1)-(A3) and K ∈ L4(R). If θ̂n

converges almost surely to θ and the bandwidth h = αn−1/(2β+1) with α > 0, then for any δ > 0,

the pointwise quadratic risk of f̂ rwk
n satisfies

sup
x∈[0,1]

sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

Eθ,f (|f̂ rwk
n (x)− f(x)|2) ≤ C1 sup

θ∈[δ,1−δ]
sup

f∈Σ(β,L)

[
Eθ,f

(
|θ̂n − θ|

)4
] 1

2

+C2n
−2β
2β+1 ,

where C1, C2 are two positive constants depending only on β, L, α, δ and K.

The proof of this theorem is postponed to Section 3.5.1. It works as follows: we first start by

proving that the pointwise quadratic risk of f2 (which is not an estimator) is of order n−2β/(2β+1).

Then we compare estimator f̂ rwk
n with function f2 to conclude the proof. We evidently obtain

the following corollary from this theorem.

Corollary 3.1. Under the assumptions of Theorem 3.1, if θ̂n is such that

lim sup
n→+∞

n
2β

2β+1

[
Eθ,f

(
|θ̂n − θ|

)4
] 1

2

< +∞, (3.15)

then for any fixed value (θ, f), there is some positive constant C such that

sup
x∈[0,1]

Eθ,f (|f̂ rwk
n (x)− f(x)|2) ≤ Cn

−2β
2β+1 .
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Note that estimators θ̂n satisfying (3.15) exist. Indeed, relying on the same arguments as in

the proofs of Theorems 2.2 or 2.3, we can prove that for instance histogram-based estimators or

the estimator proposed by Celisse and Robin [2010] both satisfy that

lim sup
n→+∞

n

[
Eθ,f

(
|θ̂n − θ|

)4
] 1

2

< +∞.

Note also that the rate n−β/(2β+1) is the usual nonparametric minimax rate over the class Σ(β, L)

of Hölder densities in the case of direct observations. While we do not formally prove that this

is also the case in undirect model (3.2), it is likely that the rate in this latter case is not faster

as the problem is more difficult. A difficulty in establishing such a lower bound lies in the fact

that when θ ∈ [δ, 1 − δ] the direct model (θ = 0) is not a submodel of (3.2). Anyway, such a

lower bound would not be sufficient to conclude that estimator f̂ rwk
n achieves the minimax rate.

Indeed, the corollary states nothing about uniform convergence of f̂ rwk
n (x) with respect to the

parameter value (θ, f) since the convergence of the estimator θ̂n is not known to be uniform.

Finally, note that the kernel estimator f̂ rwk
n (x) also depends on the regularity β of the density

f . In Appendix A, we apply Lepski’s method to explore an adaptive kernel estimator of f .

3.3.2 Maximum smoothed likelihood estimator

Let us now explain the motivations for considering an iterative procedure with functions K̃i,h

and weights ω̂(s)
i respectively defined through (3.13) and (3.14). Instead of the classical log-

likelihood, we follow the lines of Levine et al. [2011] and consider (the opposite of) a smoothed

version of this log-likelihood as our criterion, namely

ln(θ, f) =
−1

n

n∑
i=1

log[θ + (1− θ)N f(Xi)].

In this section, we denote by g0 the true density of the observations Xi. For any fixed value of θ,

up to the additive constant
∫ 1

0 g0(x) log g0(x)dx, the smoothed log-likelihood ln(θ, f) converges

almost surely towards l(θ, f) defined as

l(θ, f) :=

∫ 1

0
g0(x) log

g0(x)

θ + (1− θ)N f(x)
dx.

This quantity may be viewed as a penalized Kullback-Leibler divergence between the true density

g0 and its smoothed approximation for parameters (θ, f). Indeed, let D(a | b) denote the

Kullback-Leibler divergence between (positive) measures a and b, defined as

D(a | b) =

∫ 1

0

{
a(x) log

a(x)

b(x)
+ b(x)− a(x)

}
dx.
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Note that in the above definition, a and b are not necessarily probability measures. Moreover

it can be seen that we still have the property D(a|b) ≥ 0 with equality if and only if a = b

[Eggermont, 1999]. We now obtain

l(θ, f) = D(g0|θ + (1− θ)N f) + (1− θ)
(
1−

∫ 1

0
N f(x)dx

)
.

The second term in the right-hand side of the above equation acts as a penalization term [Egger-

mont, 1999, Levine et al., 2011]. Our goal is to construct an iterative sequence of estimators of

f that possesses a descent property with respect to the criterion l(θ, ·), for fixed value θ. Indeed,

as previously explained, θ has to remain fixed otherwise the following procedure gives a sequence

{θt} that converges to 0. We start by describing such a procedure, relying on the knowledge of

the parameters (thus an oracle procedure). Let us denote by ln(f) the smoothed log-likelihood

ln(θ, f) and by l(f) the limit function l(θ, f). We want to construct a sequence of densities

{f t}t≥0 such that

l(f t)− l(f t+1) ≥ cD(f t+1 | f t) ≥ 0, (3.16)

where c is a positive constant depending on θ, the bandwidth h and the kernel K. We thus

consider the difference

l(f t)− l(f t+1) =

∫ 1

0
g0(x) log

θ + (1− θ)N f t+1(x)

θ + (1− θ)N f t(x)
dx

=

∫ 1

0
g0(x) log

{
1− ωt(x) + ωt(x)

N f t+1(x)

N f t(x)

}
dx,

where

ωt(x) =
(1− θ)N f t(x)

θ + (1− θ)N f t(x)
.

By the concavity of the logarithm function, we get that

l(f t)− l(f t+1) ≥
∫ 1

0
g0(x)ωt(x) log

N f t+1(x)

N f t(x)
dx

≥
∫ 1

0
g0(x)ωt(x)

[
S∗(log f t+1)(x)− S∗(log f t)(x)

]
dx

≥
∫ 1

0
g0(x)ωt(x)

( ∫ 1

0
Kh(s− x)ds

)−1
(∫ 1

0
Kh(u− x) log

f t+1(u)

f t(u)
du
)
dx

≥
∫ 1

0

(∫ 1

0

g0(x)ωt(x)Kh(u− x)∫ 1
0 Kh(s− x)ds

dx
)

log
f t+1(u)

f t(u)
du. (3.17)

Let us define

αt =
1∫ 1

0 ωt(u)g0(u)du
and f t+1(x) = αt

∫ 1

0

Kh(u− x)ωt(u)g0(u)∫ 1
0 Kh(s− u)ds

du, (3.18)
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then f t+1 is a density function on [0, 1] and

l(f t)− l(f t+1) ≥ 1

αt
D(f t+1 | f t).

With the same arguments as in the proof of following Proposition 3.1, we can show that α−1
t is

lower bounded by a positive constant c depending on θ, h and K. The sequence {f t}t≥0 thus

satisfies property (3.16). However, we stress that it is an oracle as it depends on the knowledge

of the true density g0 that is unknown. Now, the estimator sequence {f̂ (t)}t≥0 defined through

Equations (3.13), (3.14) and Algorithm 1 is exactly the Monte Carlo approximation of {f t}t≥0.

We prove in the next proposition that it also satisfies the descent property (3.16).

Proposition 3.1. For any initial value of the weights ω̂0 ∈ (0, 1)n, the sequence of estimators

{f̂ (t)}t≥0 defined through (3.13), (3.14) and Algorithm 1 satisfies

ln(f̂ (t))− ln(f̂ (t+1)) ≥ cD(f̂ (t+1) | f̂ (t)) ≥ 0,

where c is a positive constant depending on θ, the bandwidth h and the kernel K.

To conclude this section, we study the behavior of the limiting criterion l. Let us introduce

the set

B = {Sϕ;ϕ density on [0, 1]}.

Proposition 3.2. The criterion l has a unique minimum f? on B. Moreover, if there exists a

constant L depending on h such that for all x, y ∈ [−1, 1]

|Kh(x)−Kh(y)| ≤ L|x− y|,

then the sequence of densities {f t}t≥0 converges uniformly to f?.

Note that the previous assumption may be satisfied by many different kernels. For instance,

if K is the density of the standard normal distribution, then this assumption is satisfied with

L =
1

h2
√

2π
e−1/2.

As a consequence and since ln is lower bounded, the sequence {f̂ (t)}t≥0 converges to a local

minimum of ln as t increases. Moreover, we recall that as the sample size n increases, the

criterion ln converges (up to a constant) to l. Thus, the outcome of Algorithm 1 that relies on

Equations (3.13) and (3.14) is an approximation of the minimizer f? of l.
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3.4 Estimation of local false discovery rate and simulation study

3.4.1 Estimation of local false discovery rate

In this section, we study the estimation of local false discovery rate (`FDR) by using the

previously introduced estimators of the density f and compare these different approaches on

simulated data. Let us recall definition (3.3) of the local false discovery rate

`FDR(x) = P(Hi being true |X = x) =
θ

θ + (1− θ)f(x)
, x ∈ [0, 1].

For a given estimator θ̂ of the proportion θ and an estimator f̂ of the density f , we obtain a

natural estimator of the local false discovery rate for observation xi

`̂FDR(xi) =
θ̂

θ̂ + (1− θ̂)f̂(xi)
. (3.19)

Let us now denote by f̂rwk the randomly weighted kernel estimator of f constructed in Sec-

tion 3.2.1, by f̂kerfdr the estimator of f presented in Algorithm 1 and by f̂msl the maximum

smoothed likelihood estimator of f presented in Algorithm 1. Note that f̂kerfdr is available

through the R package kerfdr. We also let `̂FDRm,m ∈ {rwk, kerfdr,msl} be the estimators

of `FDR induced by a plug-in of estimators f̂m in (3.19) and `̂FDRst be the estimator of `FDR

computed by the method of Strimmer [2008]. We compute the root mean squared error (RMSE)

between the estimates and the true values

RMSEm =
1

S

S∑
s=1

√√√√ 1

n

n∑
i=1

{`̂FDR
(s)

m (xi)− `FDR(xi)}2,

for m ∈ {rwk, kerfdr,msl, st} and where s = 1, . . . , S denotes the simulation index (S be-

ing the total number of repeats). We also compare L2-norms between f̂m and f for m ∈

{rwk, kerfdr,msl}, relying on the root mean integrated squared error

RMISEm =
1

S

S∑
s=1

√∫ 1

0
[f̂

(s)
m (u)− f(u)]2du.

The quality of the estimates provided by method m is measured by the mean RMSEm or

RMISEm: the smaller these quantities, the better the performances of the method.

We mention that we also tested the naive method described in Section 3.2.1 and the results

were bad. In order to present clear figures, we have chosen not to show those.
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3.4.2 Simulation study

In this section, we give an illustration of the previous results on some simulated experiments.

We simulate sets of p-values according to the mixture model (3.2). We consider three different

cases for the alternative distribution f and two different values for the proportion: θ = 0.65 and

0.85. In the first case, we simulate p-values under the alternative with distribution

f(x) = ρ
(

1− x
)ρ−1

1[0,1](x),

where ρ = 4, as proposed in Celisse and Robin [2010]. In the second case, the p-value cor-

responds to the statistic T which has a mixture distribution θN (0, 1) + (1 − θ)N (µ, 1), with

µ = 2. In the third case, the p-value corresponds to the statistic T which has a mixture density

θ(1/2) exp{−|t|}+ (1− θ)(1/2) exp{−|t− µ|}, with µ = 1. The p-values densities obtained with

those three models are given in Figure 3.1 for θ = 0.65.

For each of the 3 × 2 = 6 configurations, we generate S = 100 samples of size n ∈

{500, 1000, 2000, 5000}. In these experiments, we choose to consider the estimator of θ initially

proposed by Schweder and Spjøtvoll [1982], namely

θ̂ =
#{Xi > λ; i = 1, . . . , n}

n(1− λ)
,

with parameter value λ optimally chosen by bootstrap method, as recommended by Storey [2002].

The kernel is chosen with compact support, for example the triangular kernel or the rectangular

kernel. The bandwidth is selected according to a rule of thumb due to [Silverman, 1986, Section

3.4.2],

h = 0.9 min
{
SD,

IQR

1.34

}
n−1/5,

where SD and IQR are respectively the standard deviation and interquartile range of the data

values. Figures 3.2, 3.3 and 3.4 show the RMISEs and the RMSEs for the six configurations

and the four different methods.

We first comment the results on the estimation of f (top half of each figure). Except for

model 2, the RMISEs obtained are small for all the three procedures. Model 2 exhibits a rather

high RMISEs and this may be explained by the fact that density f is not bounded near 0 in this

case. We note that the methods rwk and kerfdr have very similar performances, except in the

third model where kerfdr seems to slightly outperform rwk. Let us recall that we introduced

this latter method only as a way of approaching the theoretical performances of kerfdr method.

Now, in five out of the six configurations, msl outperforms the two other methods (rwk, kerfdr).
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Figure 3.1: Densities of the p-values in the three different models, with θ = 0.65. Top left: first
model, top right: second model, bottom left: third model.
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Figure 3.2: RMISE (for density f) and RMSE (for `FDR) in the first model as a function of n.
Methods: "•" = rwk, "4" = kerfdr, "2" = msl, "O" = st (only for `FDR). Left: θ = 0.65,
right: θ = 0.85.
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Figure 3.3: RMISE (for density f) and RMSE (for `FDR) in the second model as a function of
n. Methods: "•" = rwk, "4" = kerfdr, "2" = msl, "O" = st (only for `FDR). Left: θ = 0.65,
right: θ = 0.85.
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Figure 3.4: RMISE (for density f) and RMSE (for `FDR) in the third model as a function of
n. Methods: "•" = rwk, "4" = kerfdr, "2" = msl, "O" = st (only for `FDR). Left: θ = 0.65,
right: θ = 0.85.
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Then, we switch to comparing the methods with respect to estimation of `FDR (bottom

half of each figure). First, note that the four methods exhibit small RMSEs with respect to

`FDR and are thus efficient for estimating this quantity. We also note that rwk tends to have

lower performances than kerfdr,msl. Now, msl tends to slightly outperform kerfdr. Thus msl

appears as a competitive method for `FDR estimation. The comparison with Strimmer [2008]’s

approach is more difficult: for model 1, the method compares with msl, while it outperforms all

the methods in model 2 and is outperformed by msl in model 3.

As a conclusion, we claim that msl is a competitive method for estimating both the alternative

density f and the `FDR.

3.5 Proofs of main results

3.5.1 Proof of Theorem 3.1

The proof works as follows: we first start by proving that the pointwise quadratic risk of

function f2 defined by (3.8) is order of n−2β/(2β+1) in the following proposition. Then we compare

the estimator f̂ rwk
n with the function f2 to conclude the proof. To simplify notation, we abbreviate

f̂ rwk
n to f̂n.

We shall need the following two lemmas. The proof of the first one may be found for instance

in Proposition 1.2 in Tsybakov [2009]. The second one is known as Bochner’s lemma and is a

classical result in kernel density estimation. Therefore its proof is omitted.

Lemma 3.1. (Proposition 1.2 in Tsybakov [2009]). Let p be a density in Σ(β, L) and K

a kernel function of order l = bβc such that∫
R
|u|β|K(u)|du <∞.

Then there exists a positive constant C3 depending only on β, L and K such that for all x0 ∈ R,∣∣∣ ∫
R
K(u)

[
p(x0 + uh)− p(x0)

]
du
∣∣∣ ≤ C3h

β, ∀h > 0.

Lemma 3.2. (Bochner’s lemma). Let g be a bounded function on R, continuous in a neigh-

borhood of x0 ∈ R and Q a function which satisfies∫
R
|Q(x)|dx <∞.

Then, we have

lim
h→0

1

h

∫
R
Q
(x− x0

h

)
g(x)dx = g(x0)

∫
R
Q(x)dx.
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Now, we come to the first step in the proof.

Proposition 3.3. Assume that kernelK satisfies Assumption (A3) and bandwidth h = αn−1/(2β+1),

with α > 0. Then the pointwise quadratic risk of function f2, defined by (3.8) and depending on

(θ, f), satisfies

sup
x∈[0,1]

sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

Eθ,f (|f2(x)− f(x)|2) ≤ C4n
−2β
2β+1 ,

where C4 is a positive constant depending only on β, L, α, δ and K.

Proof of Proposition 3.3. Let us denote by

Sn =

n∑
i=1

f(Xi)

g(Xi)
.

The pointwise quadratic risk of f2 can be written as the sum of a bias term and a variance term

Eθ,f (|f2(x)− f(x)|2) = [Eθ,f (f2(x))− f(x)]2 + Varθ,f [f2(x)].

Let us first study the bias term. According to (3.8) and the definition (3.7) of the weights, we

have

Eθ,f [f2(x)] =
n

h
Eθ,f

[
τ1K

(x−X1

h

)( n∑
k=1

τk

)−1
]

=
n

h
Eθ,f

[
f(X1)

g(X1)
K
(x−X1

h

)
S−1
n

]
=

n

h

∫ 1

0
f(t)K

(x− t
h

)
Eθ,f

[(f(t)

g(t)
+ Sn−1

)−1
]
dt

= n

∫ (1−x)/h

−x/h
K(t)f(x+ th)Eθ,f

[(f(x+ th)

g(x+ th)
+ Sn−1

)−1
]
dt. (3.20)

Since the functions f and g are related by the equation g(t) = θ + (1 − θ)f(t) for all t ∈ [0, 1],

the ratio f(t)/g(t) is well defined and satisfies

0 ≤ f(t)

g(t)
≤ 1

1− θ
≤ δ−1, ∀t ∈ [0, 1], and ∀θ ∈ [δ, 1− δ].

Then for all t ∈ [−x/h, (1− x)/h], we get

1

Sn−1 + δ−1
≤
(
f(x+ th)

g(x+ th)
+ Sn−1

)−1

≤ 1

Sn−1
,
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where the bounds are uniform with respect to t.

By combining this inequality with (3.20), we obtain

n

(∫ (1−x)/h

−x/h
K(t)f(x+ th)dt

)
Eθ,f

( 1

Sn−1 + δ−1

)
≤ Eθ,f

[
f2(x)

]
and Eθ,f

[
f2(x)

]
≤ n

(∫ (1−x)/h

−x/h
K(t)f(x+ th)dt

)
Eθ,f

( 1

Sn−1

)
.

Then, we apply the following lemma, whose proof is postponed to Section 3.6.1.

Lemma 3.3. There exist some positive constants c1, c2, c3, c4 (depending on δ) such that for n

large enough,

Eθ,f
( 1

Sn

)
≤ 1

n
+
c1

n2
, (3.21)

Eθ,f
( 1

S2
n

)
≤ c2

n2
, (3.22)

Eθ,f
( 1

Sn + 2δ−1

)
≥ 1

n
− c3

n2
, (3.23)

and Eθ,f
( 1

S2
n

)
− E2

θ,f

( 1

δ−1 + Sn

)
≤ c4

n3
. (3.24)

Relying on Inequalities (3.21) and (3.23), we have for n large enough∫ (1−x)/h

−x/h
K(t)f(x+ th)dt− c3

n
≤ Eθ,f

[
f2(x)

]
≤
∫ (1−x)/h

−x/h
K(t)f(x+ th)dt+

c1

n
.

Since f(x+ th) = 0 for all t /∈ [−x/h, (1− x)/h], we may write∫ (1−x)/h

−x/h
K(t)f(x+ th)dt =

∫
R
K(t)f(x+ th)dt.

Thus, the bias of f2(x) satisfies

|b(x)| = |Eθ,f
[
f2(x)

]
− f(x)| ≤

∫
R
K(t)|f(x+ th)− f(x)|dt+

c5

n
.

By using Lemma 3.1 and the choice of bandwidth h, we obtain that

b2(x) ≤ C5h
2β,

where C5 = C5(β, L,K). Let us study now the variance term of f2(x). We have

Varθ,f
[
f2(x)

]
=

1

h2

[
nVarθ,f (Y1) + n(n− 1)Covθ,f (Y1, Y2)

]
, (3.25)
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where

Yi =
f(Xi)

g(Xi)
K
(x−Xi

h

)
S−1
n .

The variance of Y1 is bounded by its second moment and

Eθ,f (Y 2
1 ) = Eθ,f

[(f(X1)

g(X1)

)2
K2
(x−X1

h

)
S−2
n

]
=

∫ 1

0

f2(t)

g(t)
K2
(x− t

h

)
Eθ,f

[(f(t)

g(t)
+ Sn−1

)−2]
dt.

Now, recalling that 0 ≤ f/g ≤ δ−1 and using Inequality (3.22) of Lemma 3.3, we get

Eθ,f (Y 2
1 ) ≤ h

(∫ (1−x)/h

−x/h

f2(x+ th)

g(x+ th)
K2(t)dt

)
Eθ,f

( 1

S2
n−1

)
≤ hδ−1 sup

f∈Σ(β,L)
‖f‖∞

(∫
K2(t)dt

) c2

n2
≤ C6h

n2
. (3.26)

We now study the covariance of Y1 and Y2

Covθ,f (Y1, Y2) = Eθ,f (Y1Y2)− E2
θ,f (Y1)

= Eθ,f
[
f(X1)f(X2)

g(X1)g(X2)
K
(x−X1

h

)
K
(x−X2

h

)
S−2
n

]
− E2

θ,f

[
f(X1)

g(X1)
K
(x−X1

h

)
S−1
n

]
=

∫
[0,1]2

f(t)f(u)K
(x− t

h

)
K
(x− u

h

)
Eθ,f

[(f(t)

g(t)
+
f(u)

g(u)
+ Sn−2

)−2
]
dtdu

−
(∫ 1

0
f(t)K

(x− t
h

)
Eθ,f

[(f(t)

g(t)
+ Sn−1

)−1
]
dt

)2

=

∫
[0,1]2

f(t)f(u)K
(x− t

h

)
K
(x− u

h

)
A(t, u)dtdu,

where

A(t, u) = Eθ,f
[(f(t)

g(t)
+
f(u)

g(u)
+ Sn−2

)−2
]
− Eθ,f

[(f(t)

g(t)
+ Sn−1

)−1
]
Eθ,f

[(f(u)

g(u)
+ Sn−1

)−1
]

≤ Eθ,f
( 1

S2
n−2

)
− E2

θ,f

( 1

2δ−1 + Sn−2

)
.

Hence

Cov(Y1, Y2) ≤
∫

[0,1]2
f(t)f(u)K

(x− t
h

)
K
(x− u

h

)[
Eθ,f

( 1

S2
n−2

)
− E2

θ,f

( 1

2δ−1 + Sn−2

)]
dtdu

≤ h2

(∫
R
f(x+ th)K(t)dt

)2 [
Eθ,f

( 1

S2
n−2

)
− E2

θ,f

( 1

2δ−1 + Sn−2

)]
≤ C7h

2

[
Eθ,f

( 1

S2
n−2

)
− E2

θ,f

( 1

2δ−1 + Sn−2

)]
.
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According to Inequality (3.24) of Lemma 3.3, we have

Eθ,f
( 1

S2
n−2

)
− E2

θ,f

( 1

2δ−1 + Sn−2

)
≤ c4

n3
,

hence

Covθ,f (Y1, Y2) ≤ C8h
2

n3
. (3.27)

By returning to Equality (3.25) and combining with (3.26) and (3.27), we obtain

Varθ,f
[
f2(x)

]
≤ 1

h2

[
C6h

n
+ n(n− 1)h2C8h

2

n3

]
≤ C9

nh
.

Thus, as the bandwidth h is of order n−1/(2β+1), the pointwise quadratic risk of f2(x) satisfies

Eθ,f (|f2(x)− f(x)|2) ≤ C4n
−2β
2β+1 .

Proof of Theorem 3.1. First, the pointwise quadratic risk of f̂n(x) is bounded in the following

way

Eθ,f (|f̂n(x)− f(x)|2) ≤ 2Eθ,f (|f2(x)− f(x)|2) + 2Eθ,f (|f̂n(x)− f2(x)|2). (3.28)

According to Proposition 3.3, we have

Eθ,f (|f2(x)− f(x)|2) ≤ C4n
−2β
2β+1 , (3.29)

and it remains to study the second term appearing in the right-hand side of (3.28). We write

f̂n(x)− f2(x) =
1

h

n∑
i=1

(
τ̂i∑
k τ̂k
− τi∑

k τk

)
K

(
x−Xi

h

)

=
1

h

n∑
i=1

τ̂i − τi∑
k τ̂k

K

(
x−Xi

h

)
+

1

h

n∑
i=1

τi

(
1∑
k τ̂k
− 1∑

k τk

)
K

(
x−Xi

h

)

=
n∑
k τ̂k
× 1

nh

n∑
i=1

(τ̂i − τi)K
(
x−Xi

h

)

+
n2∑

k τ̂k
∑

k τk
×
∑

k(τk − τ̂k)
n

× 1

nh

n∑
i=1

τiK

(
x−Xi

h

)
.

Moreover, recalling the definition of the weights (3.10), we have for all 1 ≤ i ≤ n,

τ̂i − τi =
θ̂n

g̃n(Xi)
− θ

g(Xi)
= θ̂n

[ 1

g̃n(Xi)
− 1

g(Xi)

]
+

1

g(Xi)
(θ̂n − θ),
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and thus get

f̂n(x)− f2(x) =
nθ̂n∑
k τ̂k
× 1

nh

n∑
i=1

[ 1

g̃n(Xi)
− 1

g(Xi)

]
K

(
x−Xi

h

)

+
n(θ̂n − θ)∑

k τ̂k
× 1

nh

n∑
i=1

1

g(Xi)
K

(
x−Xi

h

)

+
n2θ̂n∑

k τ̂k
∑

k τk
× 1

n

∑
k

[ 1

g̃n(Xk)
− 1

g(Xk)

]
× 1

nh

n∑
i=1

τiK

(
x−Xi

h

)

+
n2(θ̂n − θ)∑
k τ̂k

∑
k τk
× 1

n

∑
k

1

g(Xk)
× 1

nh

n∑
i=1

τiK

(
x−Xi

h

)
. (3.30)

Let us control the different terms appearing in this latter equality. We first remark that for all

i,

0 ≤ τi ≤ 1 and
1

g(Xi)
≤ 1

θ
≤ δ−1. (3.31)

Since by assumption θ̂n
as−−−→

n→∞
θ ∈ [0, 1], for n large enough we also get |θ̂n| < 3/2, a.s. According

to the law of large numbers and Eθ,f (τ1) = 1− θ, we also obtain that for n large enough

δ

2
≤ 1− θ

2
≤ 1

n

n∑
i=1

τi ≤
3(1− θ)

2
≤ 3(1− δ)

2
a.s. (3.32)

Moreover, by using a Taylor expansion of the function u 7→ 1/u with an integral form of the

remainder term, we have for all i,∣∣∣ 1

g̃n(Xi)
− 1

g(Xi)

∣∣∣ =
|g̃n(Xi)− g(Xi)|

g2(Xi)

∫ 1

0

(
1 + s

g̃n(Xi)− g(Xi)

g(Xi)

)−2

ds.

Since convergence of ĝn to g is valid pointwise and in L∞ norm (see Remark 3.1), and since g̃n

is a slight modification of ĝn, we have almost surely, for n large enough and for all s ∈ [0, 1] and

all x ∈ [0, 1],

1 + s
g̃n(x)− g(x)

g(x)
≥ 1− s‖ĝn − g‖∞

θ
≥ 1− s

2
> 0.

Hence, for all x ∈ [0, 1] and large enough n,∫ 1

0

(
1 + s

g̃n(x)− g(x)

g(x)

)−2

ds ≤
∫ 1

0

4ds

(2− s)2
= 2,

and we obtain ∣∣∣ 1

g̃n(Xi)
− 1

g(Xi)

∣∣∣ ≤ 2δ−2|g̃n(Xi)− g(Xi)| a.s. (3.33)

We also use the following lemma, whose proof is postponed to Section 3.6.2.
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Lemma 3.4. For large enough n, we have

n

|
∑

k τ̂k|
≤ c7 a.s. (3.34)

By returning to Equality (3.30) and combining with (3.31), (3.32), (3.33) and (3.34), we

obtain

|f̂n(x)− f2(x)|2 ≤ c8

(
1

nh

n∑
i=1

|g̃n(Xi)− g(Xi)| ×
∣∣∣K(x−Xi

h

)∣∣∣)2

+c9|θ̂n − θ|2
(

1

nh

n∑
i=1

∣∣∣K(x−Xi

h

)∣∣∣)2

(3.35)

+c10

(
1

n

n∑
i=1

|g̃n(Xi)− g(Xi)|

)2(
1

nh

n∑
i=1

K
(x−Xi

h

))2

a.s.

We now successively control the expectations T1, T2 and T3 of the three terms appearing in this

upper-bound. For the first term, we have

T1 = Eθ,f

( 1

nh

n∑
i=1

|g̃n(Xi)− g(Xi)| ×
∣∣∣K(x−Xi

h

)∣∣∣)2


= Eθ,f

 1

n2h2

n∑
i,j=1

|g̃n(Xi)− g(Xi)||g̃n(Xj)− g(Xj)| ×
∣∣∣K(x−Xi

h

)
K
(x−Xj

h

)∣∣∣


=
1

nh
Eθ,f

[
1

h
|g̃n(X1)− g(X1)|2K2

(x−X1

h

)]
+
n− 1

n
Eθ,f

[
1

h2
|g̃n(X1)− g(X1)||g̃n(X2)− g(X2)| ×

∣∣∣K(x−X1

h

)
K
(x−X2

h

)∣∣∣] .
Now,

T11 = Eθ,f
[

1

h
|g̃n(X1)− g(X1)|2K2

(x−X1

h

)]
=

∫ 1

0
Eθ,f

(
|ĝn−1(t)− g(t)|2

)
K2
(x− t

h

)g(t)

h
dt (according to definition (3.10))

≤ C10n
−2β
2β+1

∫ 1

0
K2
(x− t

h

)g(t)

h
dt (according to Remark 3.1)

≤ C11n
−2β
2β+1 (according to Lemma 3.2), (3.36)
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and in the same way

T12 =Eθ,f
[

1

h2
|g̃n(X1)− g(X1)||g̃n(X2)− g(X2)|K

(x−X1

h

)
K
(x−X2

h

)]
=

∫ 1

0

∫ 1

0
Eθ,f

[∣∣∣n− 2

n− 1
ĝn−2(t)− g(t) +

1

(n− 1)h
K
( t− s

h

)∣∣∣
×
∣∣∣n− 2

n− 1
ĝn−2(s)− g(s) +

1

(n− 1)h
K
(s− t

h

)∣∣∣]∣∣∣K(x− t
h

)
K
(x− s

h

)∣∣∣g(t)g(s)

h2
dtds.

This last term is upper-bound by

T12 ≤
∫ 1

0

∫ 1

0
Eθ,f

[(
|ĝn−2(t)− g(t)|+ 1

n− 1
g(t) +

1

(n− 1)h

∣∣∣K( t− s
h

)∣∣∣)
×
(
|ĝn−2(s)− g(s)|+ 1

n− 1
g(s) +

1

(n− 1)h

∣∣∣K(s− t
h

)∣∣∣)]
×
∣∣∣K(x− t

h

)
K
(x− s

h

)∣∣∣g(t)g(s)

h2
dtds

≤
∫ 1

0

∫ 1

0

{
E1/2
θ,f

[
|ĝn−2(t)− g(t)|2

]
E1/2
θ,f

[
|ĝn−2(s)− g(s)|2

]
+ o
( 1

nh

)}
×
∣∣∣K(x− t

h

)
K
(x− s

h

)∣∣∣g(t)g(s)

h2
dtds.

According to Remark 3.1, we have

T12 ≤ C12n
−2β
2β+1

[∫ 1

0

∣∣∣K(x− t
h

)∣∣∣g(t)

h
dt

]2

≤ C13n
−2β
2β+1 (according to Lemma 3.2). (3.37)

Thus we get that

T1 = Eθ,f

( 1

nh

n∑
i=1

|g̃n(Xi)− g(Xi)|
∣∣∣K(x−Xi

h

)∣∣∣)2
 ≤ C14n

−2β
2β+1 . (3.38)

For the second term in the right hand side of (3.35), we have

T2 = Eθ,f

|θ̂n − θ|2( 1

nh

n∑
i=1

∣∣∣K(x−Xi

h

)∣∣∣)2


≤ E1/2
θ,f

[
|θ̂n − θ|4

]
E1/2
θ,f

( 1

nh

n∑
i=1

∣∣∣K(x−Xi

h

)∣∣∣)4
 .

The proof of the following lemma is postponed to Section 3.6.3.

Lemma 3.5. There exist some positive constant C15 such that

Eθ,f

( 1

nh

n∑
i=1

∣∣∣K(x−Xi

h

)∣∣∣)4
 ≤ C15. (3.39)
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This lemma entails that

T2 ≤ C15

[
Eθ,f

(
|θ̂n − θ|4

)] 1
2
. (3.40)

Now, we turn to the third term in the right hand side of (3.35). We have

T3 = Eθ,f

( 1

n

n∑
i=1

|g̃n(Xi)− g(Xi)|

)2(
1

nh

n∑
i=1

∣∣∣K(x−Xi

h

)∣∣∣)2


= Eθ,f

 1

n4h2

n∑
i,j,k,l=1

|g̃n(Xi)− g(Xi)||g̃n(Xj)− g(Xj)|
∣∣∣K(x−Xk

h

)
K
(x−Xl

h

)∣∣∣
 .

By using the same arguments as for obtaining (3.36) and (3.37), we can get that

T3 ≤ C16n
−2β
2β+1 . (3.41)

According to (3.38), (3.40) and (3.41), we may conclude

Eθ,f (|f̂n(x)− f2(x)|2) ≤ C15

[
Eθ,f

(
|θ̂n − θ|4

)] 1
2

+ C17n
−2β
2β+1 . (3.42)

By returning to Inequality (3.28) and combining it with (3.29) and (3.42), we achieve that

Eθ,f (|f̂n(x)− f(x)|2) ≤ C1

[
Eθ,f

(
|θ̂n − θ|4

)] 1
2

+ C2n
−2β
2β+1 .

3.5.2 Other proofs

Proof of Proposition 3.1. By using the same arguments as for obtaining (3.17), we can get that

ln(f̂ (t))− ln(f̂ (t+1)) ≥ 1

n

n∑
k=1

ω̂
(t)
k D(f̂ (t+1) | f̂ (t)).

Let us now denote by

m = inf
x∈[−1,1]

Kh(x) and M = sup
x∈[−1,1]

Kh(x),

then m and M are two positive constants depending on the bandwidth h and the kernel K. We

note that for all x ∈ [0, 1],

m ≤
∫ 1

0
Kh(u− x)du ≤ min(M, 1).

Thus, for all t ≥ 1, the estimate f̂ (t) is lower bounded by m. Since the operator N is increasing,

it follows that N f̂ (t) is also lower bounded by m. Now the function

x 7→ (1− θ)x
θ + (1− θ)x
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is increasing, so that we finally obtain

ω̂
(t)
k =

(1− θ)N f̂ (t)(Xk)

θ + (1− θ)N f̂ (t)(Xk)
≥ (1− θ)m
θ + (1− θ)m

= c.

This concludes the proof.

Proof of Proposition 3.2. We start by stating a lemma, whose proof is postponed to Section 3.6.4.

Lemma 3.6. The function l : B → R is continuous with respect to the topology induced by

uniform convergence on the set of functions defined on [0, 1].

First, for all f ∈ B, we remark that m ≤ f(·) ≤M/m. Thus, N (f) and l(f) are well-defined

for f ∈ B. Moreover, it is easy to see that l(f) is bounded below on B. According to the

definition (3.18) of the sequence {f t}t≥0, every function f t belongs to B. As a consequence, we

obtain that the sequence {l(f t)}t≥0 is decreasing and lower bounded, thus it is convergent and

the sequence {f t}t≥0 converges (simply) to a local minimum of l.

Now, it is easy to see that l is a strictly convex function on the convex set B (relying on

Eggermont [1999]). Existence and uniqueness of the minimum f? of l in B thus follows, as well

as the simple convergence of the iterative sequence {f t}t≥0 to this unique minimum.

For all x, y ∈ [0, 1] and for all t, we have

|f t(x)− f t(y)| =
1∫ 1

0 ωt(u)g0(u)du

∣∣∣ ∫ 1

0

[Kh(u− x)−Kh(u− y)]ωt(u)g0(u)∫ 1
0 Kh(s− u)ds

du
∣∣∣

≤ 1∫ 1
0 ωt(u)g0(u)du

∫ 1

0

|Kh(u− x)−Kh(u− y)|ωt(u)g0(u)

m
du

≤ L

m
|x− y|,

so that the sequence {f t} is uniformly bounded and equicontinuous. Relying on Arzelà-Ascoli

theorem, there exists a subsequence {f tk} of {f t} which converges uniformly to some limit.

However, this uniform limit must be the simple limit of the sequence, namely the minimum f?

of l. Now, uniqueness of the uniform limit value of the sequence {f t}t≥0 entails its convergence.
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3.6 Proofs of technical lemmas

3.6.1 Proof of Lemma 3.3

Proof. We first show (3.22). According to the law of large numbers, since Eθ,f
(
f(X1)/g(X1)

)
= 1,

we have

Sn
n

=
1

n

n∑
i=1

f(Xi)

g(Xi)

as−−−→
n→∞

1. (3.43)

Hence
n2

S2
n

=
(Sn
n

)−2 as−−−→
n→∞

1.

By the dominated convergence theorem, there exists a constant c2 > 0 such that for n large

enough

Eθ,f
[ 1

S2
n

]
=

1

n2
Eθ,f

[n2

S2
n

]
≤ c2

n2
,

establishing (3.22). Let us now prove (3.21). By using a Taylor’s expansion, we have

1

Sn
=

1

n
× 1

1 + (Snn − 1)
=

1

n

[
2− Sn

n
+
(Sn
n
− 1
)2 1

(1 + γn(Snn − 1))3

]
,

where γn ∈]0, 1[ depends on Sn. Combining this with (3.43), we obtain

1

(1 + γn(Snn − 1))3

as−−−→
n→∞

1.

Thus, there exist some positive constants c, c′ such that for n large enough,

1

n

[
2− Sn

n
+ c′

(Sn
n
− 1
)2] ≤ 1

Sn
≤ 1

n

[
2− Sn

n
+ c
(Sn
n
− 1
)2] a.s. (3.44)

This implies in particular that

Eθ,f
[ 1

Sn

]
≤ 1

n

[
2−

Eθ,f [Sn]

n
+ cEθ,f

[
(
Sn
n
− 1)2

]]
=

1

n
+
c

n
Eθ,f

[
(
Sn
n
− 1)2

]
.

In addition,

Eθ,f
[
(
Sn
n
− 1)2

]
= Var

(Sn
n

)
=

1

n
Var

(
f(X1)

g(X1)

)
.

Remember that the ratio f/g is bounded (by δ−1) and thus has finite variance. Hence, there

exists a positive constant c1 such that for n large enough

Eθ,f
[ 1

Sn

]
≤ 1

n
+
c1

n2
.

95



3.6. PROOFS OF TECHNICAL LEMMAS

We now prove (3.23). By using again a Taylor expansion, we have

1

Sn + δ−1
=

1

Sn
× 1

1 + 1/(δSn)
=

1

Sn
− 1

δS2
n

× 1

[1 + βn/(δSn)]2
,

where βn ∈]0, 1[ depends on Sn. We also have

1

[1 + βn/(δSn)]2
as−−−→

n→∞
1.

Thus, there exists a positive constant c′′ such that for n large enough

Eθ,f
[ 1

Sn + δ−1

]
= Eθ,f

[ 1

Sn
− 1

δS2
n

× 1

[1 + βn/(δSn)]2

]
≥ Eθ,f

[ 1

Sn

]
− Eθ,f

[ c′′
S2
n

]
a.s.

According to (3.44), we have

Eθ,f
[ 1

Sn

]
≥ 1

n

[
2−

Eθ,f [Sn]

n
+ c′Eθ,f

[
(
Sn
n
− 1)2

]]
=

1

n
+
c′

n2
Var

(
f(X1)

g(X1)

)
,

and it is proved above that

Eθ,f
[ 1

S2
n

]
≤ c2

n2
.

Thus we obtain Inequality (3.23), namely

Eθ,f
[ 1

Sn + δ−1

]
≥ 1

n
− c3

n2
.

Finally, we show (3.24). In the same way as we proved (3.23) above, we have for large enough n,

Eθ,f
[ 1

Sn + 2δ−1

]
≥ 1

n
− c′3
n2

> 0

and thus

E2
θ,f

[ 1

Sn + 2δ−1

]
≥ 1

n2

(
1− 2c′3

n
+
c′23
n2

)
≥ 1

n2

(
1− 2c′3

n

)
. (3.45)

According to Inequality (3.44) (containing only positive terms for n large enough), we have

1

S2
n

≤ 1

n2

[
4 +

S2
n

n2
+ c2

(Sn
n
− 1
)4
− 4

Sn
n

+ 4c
(Sn
n
− 1
)2
− 2c

Sn
n

(Sn
n
− 1
)2
]

(as)

≤ 1

n2

[
4 +

S2
n

n2
+ c2

(Sn
n
− 1
)4
− 4

Sn
n

+ 4c
(Sn
n
− 1
)2
]

a.s.

Since

Eθ,f [Sn] = n, Eθ,f [S2
n] = nVar

(
f(X1)

g(X1)

)
+ n2 and Eθ,f

[(Sn
n
− 1
)2
]

=
1

n
Var

(
f(X1)

g(X1)

)
,
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we have

Eθ,f
[ 1

S2
n

]
≤ 1

n2

[
4 +

Eθ,f [S2
n]

n2
+ c2Eθ,f

[(Sn
n
− 1
)4]
− 4

Eθ,f [Sn]

n
+ 4cEθ,f

[(Sn
n
− 1
)2]]

≤ 1

n2

[
4 +

1

n
Var

(
f(X1)

g(X1)

)
+ 1 + c2Eθ,f

[(Sn
n
− 1
)4]
− 4 +

4c

n
Var

(
f(X1)

g(X1)

)]
≤ 1

n2

[
1 +

C4

n
+ c2Eθ,f

[(Sn
n
− 1
)4]]

. (3.46)

Combining (3.45) and (3.46), we get that

Eθ,f
[ 1

S2
n

]
− E2

θ,f

[ 1

Sn + 2δ−1

]
≤ C

n3
+
c2

n2
Eθ,f

[(Sn
n
− 1
)4]

. (3.47)

We now upper-bound the quantity Eθ,f
[
(Snn − 1)4

]
. Let us denote by

Ui =
f(Xi)

g(Xi)
− 1.

We have (
Sn
n
− 1

)4

=
1

n4

(
n∑
i=1

Ui

)4

=
1

n4

n∑
i=1

U4
i +

1

n4

n∑
i 6=j

U3
i Uj +

+
1

n4

n∑
i 6=j

U2
i U

2
j +

1

n4

n∑
i 6=j 6=k

U2
i UjUk +

1

n4

n∑
i 6=j 6=k 6=l

UiUjUkUl.

Since the random variables Ui are iid with mean zero, we obtain

Eθ,f
[(Sn

n
− 1
)4
]

=
1

n4

[
nEθ,f (U4

1 ) + n(n− 1)Eθ,f (U2
1U

2
2 )
]

= O
( 1

n2

)
. (3.48)

Finally, according to (3.47) and (3.48) we have

Eθ,f
[ 1

S2
n

]
− E2

θ,f

[ 1

Sn + 2δ−1

]
= O

( 1

n3

)
.

3.6.2 Proof of Lemma 3.4

Proof. We write

1∑
k τ̂k

=
1∑

k τk +
∑

k(τ̂k − τk)
=

1∑
k τk
−
∑

k(τ̂k − τk)
(
∑

k τk)
2
×
∫ 1

0

(
1 + s

∑
k(τ̂k − τk)∑

k τk

)−2

ds.

Let us establish that ‖τ̂ − τ‖∞,[0,1] = supx∈[0,1] |τ̂(x) − τ(x)| converges almost surely to zero.

Indeed,

τ̂(x)− τ(x) = (θ − θ̂n)
1

g(x)
+ θ̂n

(
1

g(x)
− 1

g̃n(x)

)
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and using the same argument as for establishing (3.33), we get that for n large enough and for

all x ∈ [0, 1],

|τ̂(x)− τ(x)| ≤ |θ̂n − θ|
θ

+ 2|θ̂n|
‖ĝn − g‖∞

θ2
≤ δ−1|θ̂n − θ|+ 2δ−2‖ĝn − g‖∞.

By using consistency of θ̂n and Remark 3.1, we obtain that ‖τ̂ −τ‖∞,[0,1] converges almost surely

to zero. Now,

∀s ∈ [0, 1], 1 + s

∑
k(τ̂k − τk)∑

k τk
≥ 1− s

n‖τ̂k − τk‖∞,[0,1]∑
k τk

≥ 1− s
2‖τ̂k − τk‖∞,[0,1]

θ
≥ 1− s

2
> 0 a.s.

We obtain that

n

|
∑

k τ̂k|
≤ n∑

k τk
+
n
∑

k |τ̂k − τk|
(
∑

k τk)
2
×
∫ 1

0

(
1 + s

∑
k(τ̂k − τk)∑

k τk

)−2

ds

≤ n∑
k τk

+
n2‖τ̂ − τ‖∞,[0,1]

(
∑

k τk)
2

×
∫ 1

0

(
1− s

2

)−2
ds

≤ 2

1− θ
+

8‖τ̂ − τ‖∞,[0,1]

(1− θ)2
≤ c7 a.s.

3.6.3 Proof of Lemma 3.5

Proof. In order to prove (3.39), let us consider iid random variables U1, . . . , Un defined as

Ui =
∣∣∣K (x−Xi

h

) ∣∣∣.
For all 1 ≤ p ≤ 4, we have

Eθ,f (Upi ) =

∫ ∣∣∣Kp

(
x− t
h

) ∣∣∣g(t)dt = h

∫ ∣∣Kp(t)
∣∣g(x+ th)dt ≤ C15h.

We then write ( 1

nh

n∑
i=1

∣∣∣K(x−Xi

h

)∣∣∣)4
=

1

n4h4

(∑
i

Ui

)4
, (3.49)

where (∑
i

Ui

)4
=
∑
i

U4
i +

∑
i 6=j

U3
i Uj +

∑
i 6=j

U2
i U

2
j +

∑
i 6=j 6=k

U2
i UjUk +

∑
i 6=j 6=k 6=l

UiUjUkUl.
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And for all choice of the bandwidth h > 0 such that nh→∞,

Eθ,f
[(∑

i

Ui

)4]
=nEθ,f (U4

1 ) + n(n− 1)Eθ,f (U3
1U2) + n(n− 1)Eθ,f (U2

1U
2
2 )+

+ n(n− 1)(n− 2)Eθ,f (U2
1U2U3) + n(n− 1)(n− 2)(n− 3)Eθ,f (U1U2U3U4)

=nEθ,f (U4
1 ) + n(n− 1)Eθ,f (U3

1 )Eθ,f (U1) + n(n− 1)E2
θ,f (U2

1 )+

+ n(n− 1)(n− 2)Eθ,f (U2
1 )E2

θ,f (U1) + n(n− 1)(n− 2)(n− 3)E4
θ,f (U1)

≤C15n
4h4. (3.50)

According to (3.49) and (3.50) we obtain the result.

3.6.4 Proof of Lemma 3.6

Proof. Let f be a function in B and {fn} be a sequence of densities on [0, 1] such that ‖fn −

f‖∞ −−−→
n→∞

0. Let us recall that every f ∈ B satisfies the bounds m ≤ f ≤M/m. We have

| l(fn)− l(f) | =
∣∣∣ ∫ 1

0
g0(x) log

θ + (1− θ)N f(x)

θ + (1− θ)N fn(x)
dx
∣∣∣

≤
∫ 1

0
g0(x)

∣∣∣ log
{

1 +
(1− θ)[N fn(x)−N f(x)]

θ + (1− θ)N fn(x)

}∣∣∣dx,
and

| N fn(x)−N f(x) | = N f(x)
∣∣∣ exp

∫ 1
0 Kh(u− x)[log fn(u)− log f(u)]du∫ 1

0 Kh(s− x)ds
− 1
∣∣∣

≤ M

m

∣∣∣ exp

∫ 1
0 Kh(u− x)[log fn(u)− log f(u)]du∫ 1

0 Kh(s− x)ds
− 1
∣∣∣.

For |x| < ε small enough, we have | log(1 + x)| ≤ 2|x| and | exp(x)− 1| ≤ 2|x|. Combining with

the fact that f is bounded, we get that∣∣∣ ∫ 1

0
Kh(u− x)[log fn(u)− log f(u)]du | ≤

∫ 1

0
Kh(u− x)

∣∣∣ log
{

1 +
fn(u)− f(u)

f(u)

}∣∣∣du
≤ 2‖fn − f‖∞

and thus

‖N fn −N f‖∞ ≤
4M

m2
‖fn − f‖∞.

We finally obtain

| l(fn)− l(f) |≤ C‖fn − f‖∞,

where C is a constant depending on h,K and θ.
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Conclusion

In this thesis, we have considered a semiparametric mixture model in a multiple testing setup

where several thousands of independent hypotheses can be tested simultaneously. We observe

the p-values associated with n independent tested hypotheses. The Euclidean parameter of the

model, denoted by θ stands for the proportion of true null hypotheses and the nonparametric

component f is the probability density function of the p-values under the alternative hypothesis.

The problem of estimating the parameters of the model appears from the false discovery rate

control procedures. We first have studied the estimation of the parameter θ by supposing the

nonincreasing assumption on f and distinguishing into two cases: models where f vanishes on a

non-empty interval or not. In the first case, we obtain the existence of
√
n-consistent estimators

of θ that is to say estimators θ̂n such that
√
n(θ̂n − θ) is bounded in probability (denoted by

√
n(θ̂n − θ) = OP(1)). We exhibit such estimators and also compute the asymptotic optimal

variance for this problem. Moreover, we conjecture that asymptotically efficient estimators (that

are estimators asymptotically attaining this variance lower bound) do not exist in regular models.

In the second case, we compute that the Fisher information for θ is equal to zero, then there is no

regular estimator for θ and the quadratic risk of any estimator does not converge at parametric

rate.

Secondly, we have studied the estimation of the nonparametric component f of the model,

relying on a preliminary estimator of θ. We describe different procedures to estimate f . The

first one is a randomly weighted kernel estimator and the second one is an iterative algorithm

for estimating f , that aims at maximizing a smoothed likelihood. The randomly weighted kernel

procedure may be viewed as a theoretical validation of kerfdr approach and we establish an

upper bound on its pointwise quadratic risk. Moreover, we prove that the resulting iterative

algorithm possesses a desirable descent property, just as an em algorithm does. From some

simulations to compare their performances, we claim that this iterative procedure is a competitive

method for estimating both the alternative density f and the local false discovery rate `FDR.
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Chapter 4

Another semiparametric mixture model

In this chapter, we consider another semiparametric mixture model that has proved to be

useful to analyze gene expression data coming from microarray analysis. This model has been

considered by many authors such as Bordes et al. [2006] and Bordes and Vandekerkhove [2010].

They consider the following semiparametric mixture

g(x) = (1− p)f0(x) + pf(x− µ), ∀x ∈ R, (4.1)

where f0 is assumed to be a known density function and where the unknown parameters are the

mixture proportion p ∈ (0, 1), the non-null location parameter µ and the density function f . The

density f is supposed symmetric and has R-support. We denote by F the set of all symmetric

densities with support equal to R. Bordes and Vandekerkhove [2010] propose an asymptotically

normal estimator of the unknown parameters under some mild assumptions. Here, we want to

apply the semiparametric theory to study the asymptotic efficiency of estimators of the Euclidean

parameters θ = (p, µ) of this mixture. We will suppress the subscripted R on the integral sign

from now on.

4.1 Identifiability

Note that model (4.1) is not identifiable in general, as it is shown in the following example

(mentioned in Bordes et al. [2006])

(1− p)f0(x) + pf(x− µ) = (1− p

2
)f0(x) +

p

2
f(x− 2µ), ∀x ∈ R,

where µ ∈ R∗, f0 is a symmetric density function, p ∈ (0, 1) and f(x) =
[
f0(x+µ)+f0(x−µ)

]/
2.

Then Bordes et al. [2006] give some sufficient conditions to obtain the identifiability of the

parameters of model (4.1). We define the set Fq =
{
f ∈ F ;

∫
|x|qf(x)dx < +∞

}
for q ≥ 1 and

denote by f0 the Fourier transform of the density f0.
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Identifiability condition (I) (Bordes et al. [2006]). The mixture model (4.1), with f0 ∈ F3

and f0 > 0, is identifiable if

(p, µ, f) ∈ (0, 1)× R∗ ×F3 and m 6= m0 +
k ± 2

3k
µ2, ∀k ∈ N∗,

where m0 and m are the second-order moments of f0 and f respectively.

Example (Gaussian mixture). We consider a Gaussian mixture

(1− p)N (0, 1) + pN (µ, σ2), (4.2)

where N (α, β) denotes the Gaussian distribution with mean α and variance equal to β. Here,

we have (f0, f) ∈ F2
3 and f0(x) = exp(−x2/2) > 0, ∀x ∈ R, then the identifiability condition (I)

is equivalent to

σ2 6= 1 +
k ± 2

3k
µ2, ∀k ∈ N∗ or equivalently

2µ2

3σ2 − µ2 − 3
/∈ Z.

4.2 Efficient information matrix for estimating θ

In this section, we calculate the efficient information matrix for estimating the parameter

θ = (p, µ). Firstly, let us denote

s(x) =
g(x+ µ)g(−x+ µ)

g(x+ µ) + g(−x+ µ)
, (4.3)

and

A = 1 +
(1− p)2

4

[ ∫
s(x)dx

]−1
∫ [

f0(x+ µ)− f0(−x+ µ)
]2

g(x+ µ) + g(−x+ µ)
dx. (4.4)

Proposition 4.1. If we assume that f is continuously differentiable on R, the efficient informa-

tion matrix Ĩθ,f for estimating the parameter θ = (p, µ) is given by its components ai,j(1 ≤ i, j ≤

2), where

a11 =
A

2

∫ [
f0(−x+ µ)− f0(x+ µ)

]2
dx

g(x+ µ) + g(−x+ µ)
,

a12 = a21 = Ap

∫
f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)
,

and

a22 = 2p2

∫ [
f ′(x)

]2
dx

g(x+ µ) + g(−x+ µ)
+
p2(1− p)2

2

[ ∫
s(x)dx

]−1

×
(∫ f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)

)2
.
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Moreover, if f ′ and f0(·+ µ)− f0(− ·+µ) are not linearly dependent functions, the matrix Ĩθ,f

is nonsingular.

Proof of Proposition 4.1. Firstly, the ordinary score function l̇θ,f is computed as

l̇(x) =

(
l̇(1)(x)

l̇(2)(x)

)
=

(
∂
∂p log g(x)
∂
∂µ log g(x)

)
=

1

g(x)

(
f(x− µ)− f0(x)
−pf ′(x− µ)

)
. (4.5)

For a symmetric function h such that
∫
h(x)f(x)dx = 0, let us consider a density path in F

defined by ft(x) = c(t)k(th(x))f(x) for t > 0, where we recall that k(x) = 2(1 + exp(−2x))−1

and c(t) is a normalizing constant. For every x, we have

∂

∂t

∣∣∣
t=0

log
[
(1− p)f0(x) + pft(x− µ)

]
=
pf(x− µ)h(x− µ)

g(x)
.

Then, we obtain a tangent set for f , and denote it by Ṗf ,

Ṗf =
{pf(x− µ)h(x− µ)

g(x)
;h is a symmetric function and

∫
h(x)f(x)dx = 0

}
.

Relying on definition (4.3) of function s, we define a constant vector as

Cθ,f =
[ ∫

s(x)dx
]−1

∫
s(x)

[
l̇(x+ µ) + l̇(−x+ µ)

]
dx,

and a function vector

h0(x) =
s(x)

pf(x)

[
l̇(x+ µ) + l̇(−x+ µ)− Cθ,f

]
. (4.6)

Note that the two coordinate functions of h0 are symmetric functions and∫
h0(x)f(x)dx =

1

p

∫
s(x)

[
l̇(x+ µ) + l̇(−x+ µ)− Cθ,f

]
dx

=
1

p

∫
s(x)

[
l̇(x+ µ) + l̇(−x+ µ)

]
dx− 1

p
Cθ,f

∫
s(x)dx = 0.

Hence we get that the two coordinate functions of

pf(x− µ)h0(x− µ)

g(x)
belong to Ṗf . (4.7)

In the following calculation, note that for every integrable function t on R, we have∫
t(x)dx =

1

2

∫ [
t(x) + t(−x)

]
dx. (4.8)

We now aim at proving that

l̇(x)− pf(x− µ)h0(x− µ)

g(x)
⊥ lin(Ṗf ). (4.9)
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Indeed, for every score function

pf(x− µ)h(x− µ)

g(x)
∈ Ṗf ,

we have (since fh0 is symmetric and combining with the property (4.8))∫ [
l̇(x)− pf(x− µ)h0(x− µ)

g(x)

]pf(x− µ)h(x− µ)

g(x)
g(x)dx

= p

∫ [
l̇(x+ µ)− pf(x)h0(x)

g(x+ µ)

]
f(x)h(x)dx

=
p

2

∫ [
l̇(x+ µ) + l̇(−x+ µ)− pf(x)h0(x)

g(x+ µ)
− pf(−x)h0(−x)

g(−x+ µ)

]
f(x)h(x)dx

=
p

2

∫ [
l̇(x+ µ) + l̇(−x+ µ)− pf(x)h0(x)

s(x)

]
f(x)h(x)dx (4.10)

According to definition (4.6) of function h0, we have

l̇(x+ µ) + l̇(−x+ µ)− pf(x)h0(x)

s(x)
= Cθ,f ,

and combining with the fact that
∫
h(x)f(x)dx = 0, we get that the integral (4.10) is equal to

0. This proves (4.9). According to (4.7) and (4.9), the efficient score function for θ is equal to

l̃(x) = l̇(x)− pf(x− µ)h0(x− µ)

g(x)

= l̇(x)−
s(x− µ)

[
l̇(x) + l̇(−x+ 2µ)− Cθ,f

]
g(x)

.

Relying on definition (4.3) of function s, we have

s(x− µ)

g(x)
=

g(−x+ 2µ)

g(x) + g(−x+ 2µ)
,

hence

l̃(x) = l̇(x)−
g(−x+ 2µ)

[
l̇(x) + l̇(−x+ 2µ)− Cθ,f

]
g(x) + g(−x+ 2µ)

=
l̇(x)g(x)− l̇(−x+ 2µ)g(−x+ 2µ) + Cθ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)
.

The first coordinate of l̃ is then simplified as (combining with Equation (4.5) and the symmetry

of f)

l̃(1)(x) =
l̇(1)(x)g(x)− l̇(1)(−x+ 2µ)g(−x+ 2µ) + C

(1)
θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)

=
f0(−x+ 2µ)− f0(x) + C

(1)
θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)
,
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where the constant C(1)
θ,f is computed as the following (combining with definition (4.3) of function

s, Equation (4.5) and the property (4.8))

C
(1)
θ,f

∫
s(x)dx =

∫
s(x)

[
l̇(1)(x+ µ) + l̇(1)(−x+ µ)

]
dx

=

∫ [
f(x)− f0(x+ µ)

]
g(−x+ µ) +

[
f(x)− f0(−x+ µ)

]
g(x+ µ)

g(x+ µ) + g(−x+ µ)
dx (4.11)

=

∫ [
f(x)− f0(x+ µ)

]
dx+

∫ [
f0(x+ µ)− f0(−x+ µ)

]
g(x+ µ)

g(x+ µ) + g(−x+ µ)
dx

=

∫ [
f0(x+ µ)− f0(−x+ µ)

][
(1− p)f0(x+ µ) + pf(x)

]
g(x+ µ) + g(−x+ µ)

dx

= (1− p)
∫ [

f0(x+ µ)− f0(−x+ µ)
]
f0(x+ µ)

g(x+ µ) + g(−x+ µ)
dx

=
1− p

2

∫ [
f0(x+ µ)− f0(−x+ µ)

]2
g(x+ µ) + g(−x+ µ)

dx. (4.12)

And the second coordinate of l̃ is simplified as (since f ′ is odd)

l̃(2)(x) =
l̇(2)(x)g(x)− l̇(2)(−x+ 2µ)g(−x+ 2µ) + C

(2)
θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)

=
−2pf ′(x− µ) + C

(2)
θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)
,

where the constant C(2)
θ,f is also computed as the following

C
(2)
θ,f

∫
s(x)dx =

∫
s(x)

[
l̇(2)(x+ µ) + l̇(2)(−x+ µ)

]
dx

= p

∫
g(x+ µ)g(−x+ µ)

g(x+ µ) + g(−x+ µ)

[−pf ′(x)

g(x+ µ)
+
−pf ′(−x)

g(−x+ µ)

]
dx

= p

∫
f ′(x)

[
g(x+ µ)− g(−x+ µ)

]
g(x+ µ) + g(−x+ µ)

dx. (4.13)

According to (4.1), we have

g(x+ µ)− g(−x+ µ) = (1− p)
[
f0(x+ µ)− f0(−x+ µ)

]
, (4.14)

hence

C
(2)
θ,f

∫
s(x)dx = p(1− p)

∫
f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
g(x+ µ) + g(−x+ µ)

dx. (4.15)

Let us now calculate the efficient information matrix

Ĩθ,f = Pθ,f (l̃ l̃t) = Pθ,f (l̃ l̇t) = (aij)i,j=1,2.
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The components aij are given by

a11 = Pθ,f (l̃(1) l̇(1)) =

∫
l̃(1)(x)l̇(1)(x)g(x)dx

=

∫
f0(−x+ 2µ)− f0(x) + C

(1)
θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)

[
f(x− µ)− f0(x)

]
dx

=

∫
f0(−x+ µ)− f0(x+ µ)

g(x+ µ) + g(−x+ µ)

[
f(x)− f0(x+ µ)

]
dx

+C
(1)
θ,f

∫ [
f(x)− f0(x+ µ)

]
g(−x+ µ)dx

g(x+ µ) + g(−x+ µ)

=
1

2

∫
f0(−x+ µ)− f0(x+ µ)

g(x+ µ) + g(−x+ µ)

[
f(x)− f0(x+ µ)− f(−x) + f0(−x+ µ)

]
dx

+
1

2
C

(1)
θ,f

∫ [
f(x)− f0(x+ µ)

]
g(−x+ µ) +

[
f(−x)− f0(−x+ µ)

]
g(x+ µ)

g(x+ µ) + g(−x+ µ)
dx.

Since f is even and according to the calculation of (4.11), we have

a11 =
1

2

∫ [
f0(−x+ µ)− f0(x+ µ)

]2
dx

g(x+ µ) + g(−x+ µ)

+
1− p

4
C

(1)
θ,f

∫ [
f0(x+ µ)− f0(−x+ µ)

]2
g(x+ µ) + g(−x+ µ)

dx

=
1

2

(
1 +

1− p
2

C
(1)
θ,f

)∫ [
f0(−x+ µ)− f0(x+ µ)

]2
dx

g(x+ µ) + g(−x+ µ)
.

According to definition (4.4) of constant A and (4.12), we have

A = 1 +
1− p

2
C

(1)
θ,f ,

hence

a11 =
A

2

∫ [
f0(−x+ µ)− f0(x+ µ)

]2
dx

g(x+ µ) + g(−x+ µ)
.

The components a12 and a22 is calculated in the same way

a12 = a21 = Pθ,f (l̃(1) l̇(2)) =

∫
l̃(1)(x)l̇(2)(x)g(x)dx

=

∫
f0(−x+ 2µ)− f0(x) + C

(1)
θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)

[
− pf ′(x− µ)

]
dx

= p

∫
f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)
− pC(1)

θ,f

∫
f ′(x)g(−x+ µ)

g(x+ µ) + g(−x+ µ)
dx

= p

∫
f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)
+
p

2
C

(1)
θ,f

∫
f ′(x)

[
g(x+ µ)− g(−x+ µ)

]
g(x+ µ) + g(−x+ µ)

dx

= p
(

1 +
1− p

2
C

(1)
θ,f

)∫ f ′(x)
[
f0(−x+ µ)− f0(x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)
(according to (4.14))

= pA

∫
f ′(x)

[
f0(−x+ µ)− f0(x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)
,
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and

a22 = Pθ,f (l̃(2) l̇(2)) =

∫
l̃(2)(x)l̇(2)(x)g(x)dx

=

∫
2pf ′(x− µ)− C(2)

θ,fg(−x+ 2µ)

g(x) + g(−x+ 2µ)

[
pf ′(x− µ)

]
dx

= 2p2

∫ [
f ′(x)

]2
dx

g(x+ µ) + g(−x+ µ)
− pC(2)

θ,f

∫
f ′(x)g(−x+ µ)dx

g(x+ µ) + g(−x+ µ)

= 2p2

∫ [
f ′(x)

]2
dx

g(x+ µ) + g(−x+ µ)
− p

2
C

(2)
θ,f

∫
f ′(x)

[
g(−x+ µ)− g(x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)
,

According to (4.13) and (4.15), we get that

a22 = 2p2

∫ [
f ′(x)

]2
dx

g(x+ µ) + g(−x+ µ)
+
p2(1− p)2

2

[ ∫
s(x)dx

]−1

×
(∫ f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
dx

g(x+ µ) + g(−x+ µ)

)2
.

We now can deduce the determinant of the efficient information matrix Ĩθ,f as the following

det(Ĩθ,f ) = p2A
[ ∫ [

f0(−x+ µ)− f0(x+ µ)
]2
dx

g(x+ µ) + g(−x+ µ)

∫ [
f ′(x)

]2
dx

g(x+ µ) + g(−x+ µ)

−
(∫ f ′(x)

[
f0(x+ µ)− f0(−x+ µ)

]
g(x+ µ) + g(−x+ µ)

)2]
According to Cauchy-Schwarz inequality, we obtain that det(Ĩθ,f ) ≥ 0 and the equality occurs if

and only if f ′ and f0(·+ µ)− f0(− ·+µ) are linearly dependent functions.

Example (Gaussian mixture). We consider the Gaussian mixture (4.2). Note that

f ′(x) = − x

σ2
√

2πσ2
exp− x2

2σ2
,

and

f0(x+ µ)− f0(−x+ µ) =
1√
2π

exp−(x− µ)2

2

[
1− exp(2µx)

]
.

Then the functions f ′ and f0(· + µ) − f0(− · +µ) are not linearly dependent and the efficient

information matrix Ĩθ,f is nonsingular.

4.3 Perspectives

The previous section presents preliminary results on model (4.1). There are many issues

that should be further studied. Firstly, let us note that Bordes et al. [2006] have only given
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some sufficient conditions to obtain the identifiability of the parameters of model (4.1). Then,

a perspective is to try to improve sufficient identifiability conditions or to study necessary and

sufficient identifiability conditions. In the previous section, we have only calculated the efficient

information matrix and Bordes and Vandekerkhove [2010] propose an asymptotically normal

estimator of the unknown parameters. We will try to compare their asymptotic covariance

matrix with the inverse of the efficient information matrix. Although these two matrices have

complex forms, we can compare their performances on some simulated data. Moreover, we

will try to apply the one-step method to find out an asymptotically efficient estimator of the

Euclidean parameter θ if it is possible.

108



Bibliography

David B. Allison, Gary L. Gadbury, Moonseong Heo, José R. Fernández, Cheol-Koo Lee,

Tomas A. Prolla, and Richard Weindruch. A mixture model approach for the analysis of

microarray gene expression data. Comput. Statist. Data Anal., 39(1):1–20, 2002.

J Aubert, A Bar-Hen, J-J Daudin, and S Robin. Determination of the differentially expressed

genes in microarray experiments using local fdr. BMC Bioinformatics, 5(1):125, 2004.

Y. Benjamini and Y. Hochberg. On the adaptive control of the false discovery rate in multiple

testing with independent statistics. J. Educ. Behav. Stat. Ser., 25, 2000.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289–300, 1995.

Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing

under dependency. Ann. Statist., 29(4):1165–1188, 2001.

Yoav Benjamini, Abba M. Krieger, and Daniel Yekutieli. Adaptive linear step-up procedures

that control the false discovery rate. Biometrika, 93(3):491–507, 2006.

Gilles Blanchard and Étienne Roquain. Adaptive false discovery rate control under independence

and dependence. J. Mach. Learn. Res., 10:2837–2871, 2009.

C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R

Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62, 1936.

L. Bordes and P. Vandekerkhove. Semiparametric two-component mixture model with a known

component: an asymptotically normal estimator. Math. Methods Statist., 19(1):22–41, 2010.

Laurent Bordes, Céline Delmas, and Pierre Vandekerkhove. Semiparametric estimation of a two-

component mixture model where one component is known. Scand. J. Statist., 33(4):733–752,

2006.

Per Broberg. A comparative review of estimates of the proportion unchanged genes and the false

discovery rate. BMC Bioinformatics, 6(1):199, 2005.

109



BIBLIOGRAPHY

Alain Celisse and Stéphane Robin. Nonparametric density estimation by exact leave-p-out cross-

validation. Comput. Statist. Data Anal., 52(5):2350–2368, 2008.

Alain Celisse and Stéphane Robin. A cross-validation based estimation of the proportion of true

null hypotheses. J. Statist. Plann. Inference, 140(11):3132–3147, 2010.

Gary Chamberlain. Asymptotic efficiency in semiparametric models with censoring. J. Econo-

metrics, 32(2):189–218, 1986.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1):1–38, 1977.

Sandrine Dudoit and Mark J. van der Laan. Multiple testing procedures with applications to

genomics. Springer Series in Statistics. Springer, New York, 2008.

Bradley Efron, Robert Tibshirani, John D. Storey, and Virginia Tusher. Empirical Bayes analysis

of a microarray experiment. J. Amer. Statist. Assoc., 96(456):1151–1160, 2001.

P. P. B. Eggermont. Nonlinear smoothing and the EM algorithm for positive integral equations

of the first kind. Applied Mathematics & Optimization, 39:75–91, 1999.

P.P.B. Eggermont and V.N. LaRiccia. Maximum smoothed likelihood density estimation for

inverse problems. Ann. Stat., 23(1):199–220, 1995.

P.P.B. Eggermont and V.N. LaRiccia. Maximum penalized likelihood estimation. Vol. 1: Density

estimation. Springer Series in Statistics. New York, NY: Springer., 2001.

Christopher Genovese and Larry Wasserman. Operating characteristics and extensions of the

false discovery rate procedure. J. R. Stat. Soc. Ser. B Stat. Methodol., 64(3):499–517, 2002.

Christopher Genovese and Larry Wasserman. A stochastic process approach to false discovery

control. Ann. Statist., 32(3):1035–1061, 2004.

Alexander Goldenshluger and Oleg Lepski. Bandwidth selection in kernel density estimation:

oracle inequalities and adaptive minimax optimality. Ann. Statist., 39(3):1608–1632, 2011.

Mickael Guedj, Stephane Robin, Alain Celisse, and Gregory Nuel. Kerfdr: a semi-parametric

kernel-based approach to local false discovery rate estimation. BMC Bioinformatics, 10(1):84,

2009.

110



BIBLIOGRAPHY

Nicolas W. Hengartner and Philip B. Stark. Finite-sample confidence envelopes for shape-

restricted densities. Ann. Statist., 23(2):525–550, 1995.

Yosef Hochberg. A sharper Bonferroni procedure for multiple tests of significance. Biometrika,

75(4):800–802, 1988.

Yosef Hochberg and Ajit C. Tamhane. Multiple comparison procedures. Wiley Series in Proba-

bility and Statistics. Wiley, 1 edition, 1987.

Sture Holm. A simple sequentially rejective multiple test procedure. Scand. J. Statist., 6(2):

65–70, 1979.

I. A. Ibragimov and R. Z. Hasminskii. Statistical estimation, volume 16 of Applications of

Mathematics. Springer-Verlag, New York, 1981. Asymptotic theory, Translated from the

Russian by Samuel Kotz.

Mette Langaas, Bo Henry Lindqvist, and Egil Ferkingstad. Estimating the proportion of true null

hypotheses, with application to DNA microarray data. J. R. Stat. Soc. Ser. B Stat. Methodol.,

67(4):555–572, 2005.

E. L. Lehmann. Testing statistical hypotheses. Wiley Series in Probability and Mathematical

Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, second

edition, 1986.

Oleg Lepski. Lectures given for the paris-berlin seminar at garchy, 1998.

M. Levine, D. R. Hunter, and D. Chauveau. Maximum smoothed likelihood for multivariate

mixtures. Biometrika, 98(2):403–416, 2011.

Kun Liang and Dan Nettleton. Adaptive and dynamic adaptive procedures for false discovery

rate control and estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol., 74(1):163–182, 2012.

J.G. Liao, Yong Lin, Zachariah E. Selvanayagam, and Weichung Joe Shih. A mixture model for

estimating the local false discovery rate in DNA microarray analysis. Bioinformatics, 20(16):

2694–2701, 2004.

G.J. McLachlan, R.W. Bean, and L. Ben-Tovim Jones. A simple implementation of a normal

mixture approach to differential gene expression in multiclass microarrays. Bioinformatics, 22

(13):1608–1615, 2006.

111



BIBLIOGRAPHY

Nicolai Meinshausen and Peter Bühlmann. Lower bounds for the number of false null hypotheses

for multiple testing of associations under general dependence structures. Biometrika, 92(4):

893–907, 2005.

Nicolai Meinshausen and John Rice. Estimating the proportion of false null hypotheses among

a large number of independently tested hypotheses. Ann. Statist., 34(1):373–393, 2006.

Mathias O. Mosig, Ehud Lipkin, Galina Khutoreskaya, Elena Tchourzyna, Morris Soller, and

Adam Friedmann. A whole genome scan for quantitative trait loci affecting milk protein

percentage in israeli-holstein cattle, by means of selective milk dna pooling in a daughter

design, using an adjusted false discovery rate criterion. Genetics, 157(4):1683–1698, 2001.

Dan Nettleton, J.T.Gene Hwang, RicoA. Caldo, and RogerP. Wise. Estimating the number of

true null hypotheses from a histogram of p values. Journal of Agricultural, Biological, and

Environmental Statistics, 11:337–356, 2006.

Pierre Neuvial. Asymptotic results on adaptive false discovery rate controlling procedures based

on kernel estimators. Technical report, arXiv:1003.0747, 2010.

Whitney K Newey. Semiparametric efficiency bounds. Journal of Applied Econometrics, 5(2):

99–135, 1990.

V.H. Nguyen and C. Matias. On efficient estimators of the proportion of true null hypotheses in

a multiple testing setup. Technical report, arXiv:1205.4097, 2012.

Stan Pounds and Stephan W. Morris. Estimating the occurrence of false positives and false

negatives in microarray studies by approximating and partitioning the empirical distribution

of p-values. Bioinformatics, 19(10):1236–1242, 2003.

Stéphane Robin, Avner Bar-Hen, Jean-Jacques Daudin, and Laurent Pierre. A semi-parametric

approach for mixture models: application to local false discovery rate estimation. Comput.

Statist. Data Anal., 51(12):5483–5493, 2007.

Etienne Roquain. Type I error rate control for testing many hypotheses: a survey with proofs.

J. SFdS, 152(2):3–38, 2011.

T. Schweder and E. Spjøtvoll. Plots of p-values to evaluate many tests simultaneously.

Biometrika, 69(3):493–502, 1982.

112



BIBLIOGRAPHY

Zbyněk Šidák. Rectangular confidence regions for the means of multivariate normal distributions.

J. Amer. Statist. Assoc., 62:626–633, 1967.

B. W. Silverman. Density estimation for statistics and data analysis. Monographs on Statistics

and Applied Probability. Chapman & Hall, London, 1986.

John D. Storey. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol.,

64(3):479–498, 2002.

John D. Storey. The positive false discovery rate: a Bayesian interpretation and the q-value.

Ann. Statist., 31(6):2013–2035, 2003.

John D. Storey, Jonathan E. Taylor, and David Siegmund. Strong control, conservative point

estimation and simultaneous conservative consistency of false discovery rates: a unified ap-

proach. J. R. Stat. Soc. Ser. B Stat. Methodol., 66(1):187–205, 2004.

Korbinian Strimmer. A unified approach to false discovery rate estimation. BMC Bioinformatics,

9(1):303, 2008.

Wenguang Sun and T. Cai. Large-scale multiple testing under dependence. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 71(2):393–424, 2009.

Wenguang Sun and T.Tony Cai. Oracle and adaptive compound decision rules for false discovery

rate control. J. Am. Stat. Assoc., 102(479):901–912, 2007.

Alexandre B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics.

New York, NY: Springer., 2009.

F.E. Turkheimer, C.B. Smith, and K. Schmidt. Estimation of the number of true null hypotheses

in multivariate analysis of neuroimaging data. NeuroImage, 13(5):920 – 930, 2001.

A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and

Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

Aad van der Vaart. Semiparametric statistics. Bolthausen, Erwin et al., Lectures on probability

theory and statistics. Ecole d’été de probabilités de Saint-Flour XXIX - 1999, Saint-Flour,

France, July 8-24, 1999. Berlin: Springer. Lect. Notes Math. 1781, 331-457 (2002)., 2002.

113



Peter H. Westfall and S. Stanley Young. Resampling-Based Multiple Testing: Examples and

Methods for p-Value Adjustment (Wiley Series in Probability and Statistics). Wiley, 1 edition,

1993.

Dominik Wied and Rafael Weißbach. Consistency of the kernel density estimator: a survey.

Statistical Papers, 53:1–21, 2012.



Appendix A

Adaptive estimation via Lepski’s
method

A.1 Lepski’s method

Lepski’s method is a method for choosing a "best" estimator (in an appropriate sense) among

a family of those, under suitable restrictions on this family. We recall here two selection proce-

dures for choosing an adaptive estimator of a probability density function.

Let X be a random variable in D ⊂ R having density function f with respect to the Lebesgue

measure which is supposed to belong to a given set Fβ with an unknown parameter β. We want

to estimate f on the basis of the i.i.d sample X1, . . . , Xn drawn from f . The performance of any

estimator f̂n is measured by the risk

R[f̂ ; f ] = Ef
[
lq(f̂n − f)

]
,

where l(·) is a semi-norm and q ≥ 1 is a given real number. If we choose the semi-norm l as the

Lp-norm l(g) = ‖g‖p, we come to the global estimation and the corresponding risk is given by

R[f̂n; f ] = Ef [‖f̂n − f‖qp], p ∈ [1,+∞].

If we aim at estimating function f at a fixed point x, then we come to the pointwise estimation

and the semi-norm and the corresponding risk are defined as

l(g) = |g(x)| and R[f̂n; f ] = Ef [|f̂n(x)− f(x)|q].

We then define the maximal rate R[f̂n;β] on Fβ of a given estimator f̂n and the minimax rate

RM [β] on Fβ as

R[f̂n;β] = sup
f∈Fβ

R[f̂n; f ] = sup
f∈Fβ

Ef [l(f̂n − f)]q and RM [β] = inf
f̂n

R[f̂n;β],

where the infimum is taken over all positive estimators. We say that two risks R and R′ are

equivalent and denote by R � R′ if lim supn→∞R/R
′ < +∞ and lim supn→∞R

′/R < +∞. An
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estimator f̂n is called "rate asymptotically minimax" on Fβ ifR[f̂n;β] � RM [β]. We now consider

a family of parameter sets {Fβ}β∈Ξ. Our goal is the following: from a family of rate asymp-

totically minimax estimators {f̂n,β}β∈Ξ, how can we get an adaptive estimator over the family

{Fβ}β∈Ξ, i.e, construct a new estimator f̃n independent of β which is simultaneously rate asymp-

totically minimax over all the set Fβ? In other words, this estimator satisfies R[f̃n;β] � RM [β]

for all β ∈ Ξ. Lepski (1991) proposes a selection rule for choosing an adaptive estimator f̂n,β̂ to

solve this problem. We simplify here his assumptions in the following way. His assumptions are

essentially equivalent to

1. Ξ is a bounded subset of R+;

2. the family {Fβ}β∈Ξ is nondecreasing with respect to β;

3. the minimax rates RM [β] are continuous with respect to β;

4. for each β ∈ Ξ, there is a rate asymptotically minimax estimator f̂n,β on Fβ ;

5. for n large enough and each β ∈ Ξ, lq(f̂n,β − f) is suitably concentrated around its

expectation.

Lepski then chooses a suitable finite discretization β1 < . . . < βNn of Ξ and defines β̂ = βĵ ,

where

ĵ = inf
{
j ≤ Nn : lq(f̂n,βj − f̂n,βk) ≤ KR[f̂n,βk ;βk], ∀k, j < k ≤ Nn

}
,

for some given large enough constant K. He shows that the adaptive estimator f̃n = f̂n,β̂ is

simultaneously rate asymptotically minimax over all the sets Fβ . This method has been applied

in various contexts and by many authors. Recently, Lepski has improved his method by relaxing

the monotonicity assumptions (Lepski [1998]). In particular, he proposes a new general selection

rule from a family of linear estimators. We can refer this method to Goldenshluger and Lepski

[2011].

A.2 Perspectives

In this section, we try to apply Lepski’s method to propose an adaptive estimator of the

density f in the mixture model (3.2) based on the p-values. Firstly, we recall the randomly

weighted kernel estimator of f defined as (3.11). We define the bandwidth hβ depending on a

parameter β given by

hβ = C1n
−1

2β+1 , where C1 is a known positive constant.
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Let K be a kernel and θ̂n be a given estimator of θ, then, by defining the weight

τ̂i = τ̂(Xi) = 1− θ̂n
g̃n(Xi)

, where g̃n(Xi) =
1

(n− 1)hβ

n∑
j 6=i

K
(Xi −Xj

hβ

)
,

we get a randomly weighted kernel estimator of the density f defined as

∀x ∈ [0, 1], f̂n,β(x) =
1

hβ

n∑
i=1

τ̂i∑n
k=1 τ̂k

K
(x−Xi

hβ

)
.

We suppose that the density f belongs to a Hőlder class Σ(β, L), where β is assumed to belong

to a discrete set BNn =
{
β1, β2, . . . , βNn

}
. We evaluate the regularity β of the estimated density

f and replace it into the kernel estimator f̂n,β in order to obtain an adaptive estimator. More

precisely, let C2 > 0 be a sufficiently large constant and we define

β̂ = max
{
β ∈ BNn :

∣∣f̂n,β(x0)− f̂n,γ(x0)
∣∣ ≤ C2

( log n

n

) 2β
2β+1

, ∀γ < β, γ ∈ BNn
}
.

Finally, we define

f̂∗n(x0) = f̂n,β̂(x0).

We would like to prove that under some assumptions on the sequence {Nn}, the set BNn , the

given estimator θ̂n and the kernel K, we have

lim sup
n→∞

sup
β∈BNn

sup
f∈Σ(β,L)

Eθ,f
[( n

log n

) 2β
2β+1

∣∣f̂∗n(x0)− f(x0)
∣∣2] < +∞.

In fact, note that when we study the quadratic risk of the kernel density estimators f̂n,β(x0)

(Section 3.5.1) and f̂∗n(x0), we encounter a situation that is more difficult than the case of

classical kernel density estimators. It comes from the fact that the weights in kernel estimator

f̂n,β(x0) are random and dependent. The main problem for applying the previous strategy is that

we would need to apply some exponential inequalities (Hoeffding’s or Bernstein’s inequalities),

in a non-i.i.d framework. Nonetheless, we hope that we will improve our calculations or apply

different approaches to solve this problem. Besides, we will try to see the performance of the

adaptive estimator f̂∗n(x0) on simulated data.
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