User Tools

Site Tools



This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
evenements:seminaireproba-math-fi [2019/03/19 13:03]
Valérie Picot
evenements:seminaireproba-math-fi [2019/04/08 20:03]
Valérie Picot
Line 7: Line 7:
 **__Exposés de l'​année 2019__ :** **__Exposés de l'​année 2019__ :**
 +**11 avril à 14h00 :** <color #088A85> Caroline Hillairet </​color> ​ (ENSAE) //  Aggregation of  heterogeneous ​ consistent progressive utilities//
 +++ Voir résumé |  \\We aim  to describe globally the behavior and preferences of heterogeneous agents. Our starting point is the aggregate wealth of a given economy, with a given repartition of the wealth among investors, which is not necessarily Pareto optimal. We propose a construction of an aggregate forward utility, market consistent,​that aggregates the marginal utility of the heterogeneous agents. This construction is based on the aggregation of the pricing kernels of each investor. As an application we analyze the impact of the heterogeneity and of the wealth market on the yield curve.
 +Joint work with Nicole El Karoui et Mohamed Mrad.
 +**4 avril à 14h00 :** <color #088A85> Xiaolu Tan </​color> ​ (Université Paris-Dauphine) //  From Martingale Optimal Transport to McKean-Vlasov Control Problems//
 +++ Voir résumé |  \\The Martingale Optimal Transport (MOT) problem consists in maximizing a reward value among a class of martingales with given marginal distributions. It is motivated by its application in finance to obtain the no-arbitrage price bounds of derivative options in a data calibrated market. We consider a class of MOT problems and show how it could be related to a McKean-Vlasov (mean-field) control problem, which is a large population control problem. We then study the dynamic programming principle and the numerical approximation of the McKean-Vlasov control problem.
 +**4 avril à 15h00 :** <color #088A85> Ahmed Kebaier </​color> ​ (Université Paris 13) // Non-asymptotic error bounds for The Multilevel Monte Carlo Euler method applied to SDEs with constant diffusion coefficient//​
 +++ Voir résumé |  \\In this work, we are interested in deriving non-asymptotic error bounds for the multilevel Monte Carlo method. As a first step, we deal with the explicit Euler discretization of stochastic differential equations with a constant diffusion coefficient. We prove that, as long as the deviation is below an explicit threshold, a Gaussian-type concentration inequality optimal in terms of the variance holds for the multilevel estimator. To do so, we use the Clark-Ocone representation formula and derive bounds for the moment generating functions of the squared difference between a crude Euler scheme and a finer one and of the squared difference of their Malliavin derivatives.
 **28 mars à 14h00 :** <color #088A85> Carl Graham </​color> ​ (Ecole Polytechnique) //  Théorèmes limites pour un processus de Hawkes avec auto excitation et inhibition à portée bornée// **28 mars à 14h00 :** <color #088A85> Carl Graham </​color> ​ (Ecole Polytechnique) //  Théorèmes limites pour un processus de Hawkes avec auto excitation et inhibition à portée bornée//
evenements/seminaireproba-math-fi.txt · Last modified: 2020/03/12 07:25 by Valérie Picot

Page Tools