User Tools

Site Tools


evenements:seminaireproba-math-fi

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
evenements:seminaireproba-math-fi [2019/04/08 20:03]
Valérie Picot
evenements:seminaireproba-math-fi [2021/06/01 15:20] (current)
Arnaud Gloter
Line 4: Line 4:
 Cliquer [[:​contact|ici]] pour plus d'​informations sur les moyens d'​accès. \\ Cliquer [[:​contact|ici]] pour plus d'​informations sur les moyens d'​accès. \\
  
-__Contact__ : Etienne Chevalier, Dasha Loukianova, Sergio Pulido \\+__Contact__ : Christophe Profeta, Sergio Pulido, Adrien Barrasso ​\\ 
 + 
 +**__Exposés de l'​année 2021__ :** 
 + 
 + 
 + 
 +**jeudi 20 mai à 14h :** <color #088A85> Trâm Ngo Thi Bao  </​color>​ (Université Paris Est Créteil) // Asymptotic behavior of the multilevel type error for SDEs driven by a pure jump Lévy process. // 
 +++ Voir résumé |  \\ ..... 
 +++ 
 + 
 +**jeudi 6 mai à 14h :** <color #088A85> Clément Rey  </​color>​ (École Polytechnique) // Meta-model for indicator functions using Polynomial Chaos Expansion. 
 + // 
 +++ Voir résumé |  \\ ..... 
 +++ 
 + 
 + 
 +**jeudi 29 avril à 14h :** <color #088A85> Benjamin Jourdain </​color>​ (École des Ponts, CERMICS) // Approximation de couplages martingale réels dans la topologie faible adaptée. // 
 +++ Voir résumé |  \\ ..... 
 +++ 
 + 
 + 
 +**jeudi 8 avril à 14h :** <color #088A85> Giacomo Toscano </​color>​ (ENS Pisa) // Rate-efficient asymptotic normality of the Fourier estimator of the Leverage process. // 
 +++ Voir résumé |  \\ We prove a Central Limit Theorem for two estimators of the leverage process based on the Fourier 
 + 
 +method of [Malliavin and Mancino, 2009], showing that they reach the optimal rate 1/4 and a smaller 
 +variance with respect to different estimators based on a pre-estimation of the instantaneous volatility. 
 +The obtained limiting distributions of the estimators are supported by simulation results. Further, 
 +we exploit the availability of efficient leverage estimates to show, using S&P500 prices, that adding 
 +an extra term which accounts for the leverage effect to the Heterogeneous Auto-Regressive volatility 
 + 
 +model by [Corsi, 2009], increases the explanatory power of the latter. 
 +++ 
 + 
 +**jeudi 8 avril à 15h15 :** <color #088A85> Adrien Richou </​color>​ (Université de Bordeaux) ​ //  A propos de l'​espérance conditionnelle (et des EDSRs) réfléchie(s) dans un domaine non convexe. // 
 +++ Voir résumé |  \\ Je vais présenter dans cet exposé des résultats nouveaux sur l'​existence et l'​unicité de solution 
 +pour des EDSRs réfléchies dans des domaines non convexes supposés "​faiblement étoilés"​. 
 +Notons que le cas particulier des EDSRs de générateur nul, à savoir la simple espérance conditionnelle,​ 
 +est déjà un cas d'​étude intéressant. En particulier,​ on établit des résultats d'​existence et d'​unicité dans un cadre 
 +markovien avec une condition terminale et un générateur Hölder continus, mais également dans un cadre 
 +général sous une hypothèse de petitesse sur les paramètres de l'​EDSR. 
 +C'est un travail en commun avec Jean-François Chassagneux (Université de Paris) et Sergey Nadtochiy 
 +(Illinois Institute of Technology). 
 +++ 
 + 
 +**jeudi 1 avril à 14h :** <color #​088A85> ​ Nabil Kazi-Tani </​color>​ (Université Lyon 1) //  Problèmes de ruine, équation de la chaleur sur un triangle, solutions extrémales et jeux à champs moyen. ​ // 
 +++ Voir résumé |  \\ Je donnerai dans cet exposé deux exemples de problèmes de contrôle stochastique consistant à optimiser un critère discontinu, dans lesquels d’une part, la fonction valeur peut être obtenue explicitement et d’autre part, le contrôle optimal est extrémal (contrôle bang-bang). 
 +Je considérerai d’abord le problème consistant à minimiser une probabilité de ruine en temps fini pour des martingales browniennes. En calculant explicitement les probabilités de sorties d’un triangle rectangle par le mouvement brownien (en utilisant des résultats connus sur les processus de Bessel), il est possible de montrer que la fonction valeur du problème de contrôle est une solution régulière d'une EDP de la chaleur avec des conditions aux bords discontinues. J’expliquerai en quoi ce problème est utile en assurance, en biologie, ou encore en science politique.  
 +Dans un 2e temps, je montrerai comment obtenir des résultats similaires dans des problèmes de jeux différentiels à N joueurs, dont je prendrai une approximation de type champs moyen dans le régime où N est grand.  
 + 
 + 
 +Cet exposé s’appuie sur des travaux en collaboration avec Stefan Ankirchner (Jena), Christophette Blanchet-Scalliet (Lyon), Julian Wendt (Jena) et Chao Zhou (Hong Kong). 
 +++ 
 + 
 +**jeudi 25 mars à 14h :** <color #​088A85> ​ Caroline Hillairet </​color>​ (ENSAE) ​ //  Valuation of  cyber-insurance derivatives indexed by Hawkes processes ​ // 
 +++ Voir résumé |  \\ With the rise of digital economy, cyber risk has become a major concern for public entities, private companies and individuals. The threat of cyber risk is rapidly growing and evolving, making it one of the most important social and economic risks. In France, the ANSSI has announced a rise of 400 % of reported cyber incidents from 2019 to 2020, and no sector is spared.  
 + 
 +In this context, we propose a multivariate Hawkes process to model cyber incidents frequency. ​ Based on the Privacy Rights Clearinghouse ​ (PRC) database, we  show the ability of Hawkes models to capture self-excitation and interactions of data-breaches depending on their types and targets. Once we have characterized this self-excitation property of cyber claims arrivals, the challenge that arises is to compute valuation formula for cyber insurance contracts and portfolios. 
 + 
 +Indeed, in  actuarial science, classic models used to describe ​ insurance portfolio relies on the assumptions of the claims arrival being modeled by a Poisson process, and of independence among claim sizes and between claim sizes and claim inter-occurrence times. However, in practice those assumptions are often too restrictive and there is a need for more general models. To achieve this, we provide an expansion formula for Hawkes processes which involves the addition of jumps at deterministic times in the spirit of the integration by parts formula for Poisson functional. Our approach allows us to provide an expansion of the premium of a class of cyber insurance derivatives (such as reinsurance contracts including generalized Stop- Loss contracts) or risk management instruments (like Expected Shortfall) in terms of so-called shifted Hawkes processes. From the actuarial point of view, these processes can be seen as "​stressed"​ scenarios. Our expansion formula for Hawkes processes enables us to provide lower and upper bounds on the premium (or the risk evaluation) of such cyber contracts and to quantify the surplus of premium compared to the standard modeling with a homogenous Poisson process.  
 + 
 +Based on joint works with  Yannick Bessy-Roland,​ Alexandre Boumezoued, ​ Anthony Réveillac and Mathieu Rosenbaum. 
 +++ 
 + 
 +**jeudi 18 mars à 14h :** <color #​088A85> ​ Anthony Reveillac </​color>​ (INSA Toulouse) //  Méthode de Malliavin-Stein pour les fonctionnelles de Hawkes ​ // 
 +++ Voir résumé |  \\Depuis plusieurs années l’étude des processus de Hawkes (processus de Poisson auto-excitants) a mobilisé beaucoup d’attention dans la communauté des statistiques et des probabilités appliquées à la finance, l’économie ou l’assurance. De façon surprenante,​ jusqu’à peu, bon nombre de résultats « classiques » manquaient ​ toujours à l’appel. A titre d'​exemple l’obtention d'un principe de grande déviation, ou de théorèmes limites pour ces processus est relativement récente. Ainsi, même si des TCL fonctionnels peuvent être obtenus pour le processus de Hawkes (ou certaines de ses fonctionnelles),​ nous n’avons trouvé aucune trace dans la littérature de TCL quantitatifs,​ c’est à dire de bornes de type Berry-Esséen pour les théorèmes limites mentionnés plus haut. Motivés par une application en assurance, nous proposons dans cet exposé de telles bornes de Berry-Esséen en utilisant ​ le calcul de Malliavin et la méthode de Stein. Nous expliquerons,​ la méthode utilisée et les principaux éléments qui permettent de mettre en place une approche générale pour une large variété de fonctionnelles d’un processus de Hawkes. 
 + 
 +Cet exposé est basé sur des travaux en collaboration avec Caroline Hillairet, Lorick Huang, Mahmoud Khabou et Mathieu Rosenbaum. 
 +++ 
 + 
 +**jeudi 11 mars à 14h :** <color #​088A85> ​ Giulia Livieri </​color> ​ (ENS Pisa)  //  Mean-Field games of finite-fuel capacity expansion with singular controls ​ // 
 +++ Voir résumé |  \\ We study Nash equilibria for a sequence of symmetric N-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-fieldgame (MFG) counterpart. We construct a solution of the MFG via a simple iterativescheme that produces an optimal control in terms of a Skorokhod reflection at a(state-dependent) surface that splits the state space in action and inaction region.We then show that a solution of the MFG of capacity expansion induces approximateNash equilibria for the N-player games with approximation error ε going to zero asN tends to infinity. Our analysis relies entirely on probabilistic methods and extendsthe well-known connection between singular stochastic control and optimal stoppingto a mean-field framework. 
 +++ 
 + 
 +**jeudi 11 mars à 15h15 :** <color #​088A85> ​ Claudio Fontana </​color> ​ (Université de Padoue) ​  // HJM models for multiple term structures under the real-world probability ​ // 
 +++ Voir résumé |  \\ Multiple term structures can coexist in a single financial market. Notable examples include FX markets, energy futures markets and, especially, interest rate markets, where multiple yield curves have emerged from the 2007 financial crisis. In this talk, we present a general modelling approach to multiple term structures with jump-diffusion dynamics under the real-world probability measure. Extending the Heath-Jarrow-Morton framework, we discuss market viability from the viewpoint of large financial markets. We study the model by analysing the associated Heath-Jarrow-Morton-Musiela SPDE, establishing existence and uniqueness of a mild solution under suitable conditions. This talk is based on joint work with Eckhard Platen (UTS Sydney) and Stefan Tappe (Karlsruhe Institute of Technology). 
 + 
 + 
 +++ 
 + 
 +**jeudi 4 mars à 14h :** <color #​088A85> ​ Noufel Frikha </​color> ​ (Université de Paris) ​ // Quelques formules d'​intégration par partie en finance et leur simulation Monte Carlo  // 
 +++ Voir résumé |  \\ Dans cet exposé, je présenterai quelques nouvelles formules d'​intégration par partie pour des processus de diffusion tués ainsi que pour une classe de modèles à volatilité stochastique avec drift non-borné. Pour cela, nous utilisons des techniques de perturbation Markovienne de processus stochastique et nous développons un calcul de Malliavin adapté à la chaîne de Markov intervenant dans les formules de représentation probabiliste de la loi marginale considérée. Ces formules permettent entre autre d'​élaborer des estimateurs Monte Carlo sans biais et donc de calculer des prix d'​options ainsi que leurs sensibilités à certains paramètres,​ les Grecques, avec une méthode numérique de complexité optimale. 
 + 
 +Cet exposé est issu de deux travaux en collaboration avec Arturo Kohatsu-Higa (université Ritsumeikan) et Libo Li (université du New South Wales) d'une part, et avec Junchao Chen (université de Paris) et Houzhi Li (université de Paris) d'​autre part. 
 + 
 +++ 
 + 
 + 
 +**jeudi 18 février à 14h :** <color #​088A85> ​ Laurence Carassus</​color> ​ (ESILV) ​ // No-arbitrage with multiple-priors in discrete time.  // 
 +++ Voir résumé |  \\ Joint work with R. Blanchard. 
 + 
 +Affiliation : DVRC et LMR (version longue : Léonard de Vinci Pôle Universitaire,​ Research Center, 92 916 Paris La Défense, France and LMR, UMR 9008, Université ​ Reims Champagne-Ardenne) 
 + 
 +Résumé : In a discrete time and multiple-priors setting, we propose a new characterisation of the condition of quasi-sure no-arbitrage of Bouchard et Nutz (2015) which has become a standard assumption. This characterisation shows that it a well-chosen condition. Indeed, at first sight at least, under this condition it is not even clear if there exists a model satisfying the uni-prior no-arbitrage condition. We prove that this is in fact possible. But still they may exist some models that are not arbitrage free. This means that an agent may not be able to delta-hedge a simple vanilla option using different levels of volatility in an arbitrage free way. We show that the quasi-sure no arbitrage condition for a set of prior QT is equivalent to the existence of a subclass of priors PT such that PT and QT have the same polar sets (roughly speaking the same relevant events) and such that every prior in PT is arbitrage free. We also show that the condition of quasi-sure no-arbitrage is equivalent to several previously used alternative notions of no-arbitrage which allows the proof of important results in mathematical finance (super-hedging and utility maximization). ​ We finally revisit the so-called geometric and quantitative no-arbitrage conditions and explicit two important examples where all these concepts are illustrated.++ 
 + 
 + 
 +**jeudi 11 février à 14h :** <color #088A85> Paul Gassiat </​color>​ (Dauphine) // Formules asymptotiques en temps court dans les modèles à volatilité rugueuse. ​ // 
 +++ Voir résumé |  \\ Il est bien connu que le modèle de Black-Scholes,​ qui suppose la volatilité des prix des actifs financiers constante au cours du temps, n'est pas capable de reproduire les données observées sur les marchés financiers. Il est donc naturel de considérer des modèles avec des dynamiques plus compliquées,​ tels que les modèles à volatilité stochastique. Dans les dernières années, il a été observé qu'une famille de ces modèles (les modèles à volatilité dite rugueuse) permettent de bien reproduire certaines caractéristiques des prix du marché, inaccessibles par les modèles classiques. Dans ces modèles la volatilité suit une dynamique de type fractionnaire avec des trajectoires beaucoup plus irrégulières que celles d'une diffusion classique. Ces modèles sont cependant plus compliqués à la fois à étudier et à simuler, notamment à cause de leur caractère non Markovien, ce qui peut rendre leur utilisation pratique ainsi que leur étude théorique délicate. Dans mon exposé, après avoir présenté la motivation conduisant à l'​introduction de ces modèles et leurs spécificités,​ je détaillerai quelques résultats récents sur leur comportement,​ notamment l'​obtention de formules asymptotiques permettant des calculs numériques rapides. Travail en commun avec P. Friz (TU Berlin) et P. Pigato (Rome).++ 
 + 
 +**jeudi 4 février à 14h :** <color #088A85> Ahmed Kebaier </​color>​ (Paris 13) //  Développements récents autour de la méthode Multilevel Monte Carlo. ​ // 
 +++ Voir résumé |  \\ Dans cet exposé, nous présentons les nouveaux résultats que nous avons développés autour de la méthode Multilevel Monte Carlo (MLMC) et de ses applications potentielles en finance. Les résultats obtenus couvrent des développements asymptotiques et non-asymptotiques pour la méthode MLMC dans le cadre de processus de diffusion multi-dimensionnels et de processus de Lévy à sauts purs.  
 +Nous illustrons les performances des méthodes MLMC à travers des exemples issus de la finance quantitative.++ 
 + 
 + 
 +**jeudi 28 janvier à 14h :** <color #088A85> Thibaut Mastrolia </​color>​ (École Polytechnique) // quelques développements récents sur les mécanismes d’enchères dans des marchés financiers. ​ // 
 +++ Voir résumé |  \\ Dans cet exposé, nous étudions des enchères séquentielles sur les marchés financiers recevant pendant une période donnée des ordres à l’achat et à la vente d’un actif risqué. Le prix de cet actif est alors déterminé à la clôture de l’enchère afin de maximiser le volume d’ordres échangés durant la durée de l’enchère comme un équilibre de l'​offre et de la demande. Nous nous concentrons ensuite sur la durée optimale d'une enchère afin de réduire l'​erreur entre ce prix et le prix « juste » du titre considéré. Lorsque les investisseurs minimisent simultanément leurs coûts de transaction en adaptant leur intensité de négociation à l'​état du marché, nous fournissons l'​existence d'un équilibre de Nash pour ce jeu stochastique réduit à l'​analyse d'un système d'EDP avec des discontinuités. Nous calculons ensuite la durée optimale des enchères pour certaines actions négociées sur Euronext. Enfin, nous étendons l'​étude à un nouveau mécanisme de marché "ad hoc electronic auction design"​ (AHEAD) dans lequel les participants du marché ont la possibilité de déclencher l'​enchère lorsque cela est nécessaire. Nous étudions l’intérêt de ce nouveau mécanisme par rapport aux enchères séquentielles classiques et aux carnets d'​ordres.  
 + 
 +Basé sur des travaux en collaboration avec Joffrey Derchu, Philippe Guillot, Paul Jusselin et Mathieu Rosenbaum.++ 
 + 
 + 
 +**jeudi 21 janvier à 14h :** <color #088A85> Arnaud Gloter</​color> ​ (LaMME, Université d'​Evry) ​ // Rate of estimation for the stationary distribution of stochastic damping systems with continuous observations. // 
 +++ Voir résumé |  \\  (joint work with Sylvain Delattre, Univ. Paris Diderot; and Nakahiro Yoshida, Univ. of Tokyo) 
 + 
 +Abstract: ​ We study the problem of the non-parametric estimation for the density $\pi$ of the stationary distribution of a stochastic two-dimensional damping Hamiltonian system $(Z_t)_{t\in[0,​T]}=(X_t,​Y_t)_{t \in [0,T]}$. From the continuous observation of the sampling path on $[0,T]$, we study the rate of estimation for $\pi(x_0,​y_0)$ as $T \to \infty$. We show that kernel based estimators can achieve the rate $T^{-v}$ for some explicit exponent $v \in (0,1/2)$. One finding is that the rate of estimation depends on the smoothness of $\pi$ and is completely different with the rate appearing in the standard i.i.d. setting or in the case of two-dimensional non degenerate diffusion processes. Especially, this rate depends also on $y_0$. Moreover, we obtain a minimax lower bound on the $L^2$-risk for pointwise estimation, with the same rate $T^{-v}$, up to $\log(T)$ terms.++ 
 + 
 +**jeudi 7 janvier à 14h :** <color #088A85> Xavier Erny</​color> ​ (LaMME, Université d'​Evry) ​ // Propagation du chaos conditionnelle pour des sytèmes de neurones en interaction en champ moyen. // 
 +++ Voir résumé |  \\  Nous étudions un système stochastique de neurones en interaction dans une normalisation diffusive. Le système est constitué de N neurones, chacun envoie des décharges aléatoirement avec un taux qui dépend de son potentiel de membrane. A chaque instant de décharge, le potentiel du neurone correspondant est réinitialisé à 0 et tous les autres neurones reçoivent une quantité de potentiel supplémentaire,​ qui est une variable aléatoire centrée de l'​ordre de N^{−1/2}. Entre deux décharges successives,​ le potentiel de chaque neurone suit un flot déterministe. Nous prouvons que ce système converge, quand N tend vers l'​infini,​ vers une équation différentielle stochastique avec saut dirigée par une mesure de Poisson et un mouvement brownien W, qui est créé par le théorème central limite. Ce mouvement brownien régit les mouvements de toutes les particules, et crée un bruit commun à tous les neurones du système limite. Conditionnellement à W, les neurones sont indépendants dans le système limite. C'est la propriété de propagation du chaos conditionnelle. Pour prouver la convergence en loi du système fini vers le système limite, nous introduisons un nouveau problème de martingale adapté à notre cadre de travail. Les techniques utilisées dans les preuves reposent sur le fait qu'on étudie des systèmes échangeables.++ 
 + 
 + 
 +**__Exposés de l'​année 2020__ :** 
 + 
 +**jeudi 17 décembre à 14h :** <color #088A85> Stéphane Menozzi</​color> ​ (LaMME, Université d'​Evry) ​ // Estimées de densité et de gradients pour des EDS stables non dégénérées à dérive mesurable non bornée. // 
 +++ Voir résumé |  \\  Nous considérons une EDS non dégénérée ​ stable, i.e. dirigée par le Brownien ou un processus stable isotrope d'​indice alpha dans (0,2), avec un coefficient de diffusion Hölder continu en espace et une dérive non bornée à croissance linéaire. Nous obtenons des estimées de type noyau de la chaleur précises (majoration et minoration) pour la densité ​ ainsi que des estimées ponctuelles sur  les dérives (jusqu'​à l'​ordre 2 en espace dans le cas Brownien, sur la dérivée fractionnaire d'​ordre alpha et le gradient logarithmique de la densité dans le cas de saut pur). Ces estimées mettent en particulier en évidence le transport de la condition initiale par la dérive non bornée le long d'un flot auxiliaire (éventuellement régularisé). 
 +Travaux avec A. Pesce (Bologne) et Xicheng Zhang (Wuhan)++ 
 + 
 +**jeudi 10 décembre à 14h :** <color #088A85> Simone Scotti</​color> ​ (LPSM, Université de Paris) ​ // A Gamma Ornstein-Uhlenbeck Model Driven by a Hawkes Process. // 
 +++ Voir résumé |  \\  We propose an extension of the Gamma-OU Barndorff-Nielsen and Shephard model taking into account jump clustering phenomena. We assume that the intensity process of the Hawkes driver coincides, up to a constant, with the variance process. By applying the theory of continuous-state branching processes with immigration,​ we show existence and uniqueness of strong solutions of the SDE governing the asset price dynamics. We exploit a measure change of self-exciting Esscher type in order to describe the relation between the risk-neutral and the historical dynamics, showing that the Gamma-OU Hawkes framework is stable under this probability change. By exploiting the affine features of the model we provide an explicit form for the Laplace transform of the asset log-return, for its quadratic variation and for the ergodic distribution of the variance process. We show that the model proposed exhibits a larger flexibility in comparison with the Gamma-OU model, in spite of the same number of parameters required. In particular, we calibrate the model on market vanilla option prices via characteristic function inversion techniques and we study its sensitivities. The main financial result is that implied volatility of options written on VIX is upward shaped due to the self-exciting property of Hawkes processes, in contrast with the downward slope in usual Gamma-OU Barndorff-Nielsen and Shephard model. 
 + 
 +Joint work with Guillaume Bernis, Riccardo Brignone and Carlo Sgarra.++ 
 + 
 +**vendredi 11 décembre à 14h :** <color #​088A85>​Ludovic Goudenège ​ </​color>​ (Fédération de Mathématiques de CentraleSupélec,​ CNRS) //Quelques résultats autour des équations de Navier-Stokes stochastiques. // 
 +++ Voir résumé |  \\  Dans cet exposé, je présenterai des résultats actuels sur les équations de Navier-Stokes stochastiques,​ notamment sur des versions régularisées type Leray ou Camassa-Holm. Pour ces équations, dans le cas de bruits additifs non dégénérés,​ on peut montrer qu'il existe une unique mesure invariante, et que les solutions possèdent des moments polynomiaux,​ dont la divergence en certains petits paramètres est rendue explicite. Je montrerai également la convergence de schémas numériques en éléments finis stochastiques pour une version alpha-Navier-Stokes bruitée par des bruits multiplicatifs. La technique de démonstration est basée sur des estimées dans des espaces de Nikolskii. Dans une troisième partie, je présenterai des résultats récents d'​approximations de champs turbulents et intermittents basés sur la reconstruction d'un Chaos Gaussien Multiplicatif dirigeant une équation différentielle stochastique.++ 
 + 
 +**mardi 1 décembre à 14h :** <color #​088A85>​Alain Durmus </​color>​ (CMLA, ENS Paris-Salcay) //​Quantitative convergence of Unadjusted Langevin Monte Carlo and application to stochastic approximation. // 
 +++ Voir résumé |  \\ Stochastic approximation methods play a central role in maximum likelihood estimation problems involving intractable likelihood functions, such as marginal likelihoods arising in problems with missing or incomplete data, and in parametric empirical Bayesian estimation. Combined with Markov chain Monte Carlo algorithms, these stochastic optimisation methods have been successfully applied to a wide range of problems in science and industry. However, this strategy scales poorly to large problems because of methodological and theoretical difficulties related to using high-dimensional Markov chain Monte Carlo algorithms within a stochastic approximation scheme. This paper proposes to address these difficulties by using unadjusted Langevin algorithms to construct the stochastic approximation. This leads to a highly efficient stochastic optimisation methodology with favourable convergence properties that can be quantified explicitly and easily checked. The proposed methodology is demonstrated with three experiments,​ including a challenging application to high-dimensional statistical audio analysis and a sparse Bayesian logistic regression with random effects problem.++ 
 + 
 +**jeudi 26 novembre à 14h :** <color #​088A85>​Lucas Izydorczyk </​color>​ (ENSTA) //​Fokker-Planck equations with terminal condition and related McKean probabilistic representation. // 
 +++ Voir résumé |  \\  Usually Fokker-Planck type partial differential equations (PDEs) are well-posed if the initial condition is specified. Here, alternatively,​ we consider the inverse problem which consists in prescribing final data: in particular we give sufficient conditions for existence and uniqueness. We also provide a probabilistic representation of those PDEs in the form of a 
 +solution of a McKean type equation corresponding to the time-reversal 
 +dynamics of a diffusion process.++ 
 + 
 +**jeudi 19 novembre à 14h :** <color #​088A85>​Giovanni Conforti </​color>​ (Ecole Polytechnique,​ CMAP) //On the turnpike property for stochastic control. // 
 +++ Voir résumé |  \\  In deterministic dynamic control, the turnpike property stipulates that the trajectory of optimal curves is divided into three phases: two transient phases at the beginning and at the end and a long stationary phase in which the curve is exponentially close to a steady state, called the turnpike. Although there is a vast literature on the convergence to equilibrium for uncontrolled stochastic processes and on turnpike theorems for deterministic control problems, not so much is known about the turnpike phenomenon for stochastic control problems. In this talk, I will present some examples of stochastic control problems for which quantitative exponential convergence of dynamic solutions towards solutions of the ergodic problem can be established. Among these, various instances of the (mean field) Schrödinger problem will be discussed. 
 + 
 +Based on joint works with J.Backhoff, A.Chiarini, G.Clerc, I.Gentil G.Greco, C.Léonard, L.Tamanini and Z.Ren.++ 
 + 
 +**jeudi 12 novembre à 14h :** <color #​088A85>​Eduardo Abi Jaber </​color>​ (Paris 1 Panthéon-Sorbonne) //​Linear-Quadratic control of stochastic Volterra equations. // 
 +++ Voir résumé |  \\  We treat Linear-Quadratic control problems for a class of stochastic Volterra equations of convolution type. These equations are in general neither Markovian nor semimartingales,​ and include the fractional Brownian motion with Hurst index smaller than 1=2 as a special case. We prove that the value function is of linear quadratic form with a linear optimal feedback control, depending on non-standard infinite dimensional Riccati equations, for which we provide generic existence and uniqueness results. Furthermore,​ we show that the stochastic Volterra optimization problem can be approximated by conventional finite dimensional Markovian Linear Quadratic problems, which is of crucial importance for numerical implementation. 
 +Joint work with Enzo Miller and Huyên Pham.++ 
 + 
 +**jeudi 5 novembre à 14h :** <color #​088A85>​Ishak Hajjej ​ </​color>​ (ENSIIE, LaMME) ​ //Optimal stopping contract for Public PrivatePartnerships under moral hazard. // 
 +++ Voir résumé |  \\ This paper studies optimal Public Private Partnerships contracts between a public entityand a consortium, in continuous-time and with a continuous payment, and the possibility forthe public to stop the contract. The public ("​she"​) pays a continuous rent to the consortium("​he"​),​ while the latter gives a best response characterized by his effort. This effort impactsthe drift of the social welfare, until a terminal date decided by the public when she stops thecontract and gives compensation to the consortium. Usually, the public can not observe theeffort done by the consortium, leading to a principal agent’s problem with moral hazard. Wesolve this optimal stochastic control with optimal stopping problem in this context of moralhazard. The public value function is characterized by the solution of an associated HamiltonJacobi Bellman Variational Inequality. The public value function and the optimal effort andrent processes are computed numerically by using the Howard algorithm. In particular, theimpact of the social welfare’s volatility on the optimal contract is studied..++ 
 + 
 + 
 +**jeudi 15 octobre à 14h :** <color #088A85> Adrien BARRASSO </​color>​ (LaMME, ENSIIE) ​ //Solutions mild découplées d'EDP (éventuellement singulières ou path-dependent) représentées par des Équations Différentielles Stochastiques Rétrogrades. // 
 +++ Voir résumé |  \\  Nous introduirons une nouvelle notion de solution dite mild découplée pour des problèmes d'​évolution déterministes inspirée des solutions milds. Nous étudierons un certain nombre de résultats d'​existence et d'​unicité d'une telle solution mild découplée pour des EDP semi-linéaires (éventuellement singulières ou path-dependent) et donnerons une représentation probabiliste de cette solution via des EDSR.++ 
 + 
 +**jeudi 8 octobre à 14h :** <color #088A85> Cyril Benezet </​color>​ (LaMME, ENSIIE) ​ //​Simulation et estimation de mesures de risques extrêmes pour copules à facteurs et à marginales données. // 
 +++ Voir résumé |  \\  Nous nous intéressons au calcul de statistiques E[g(X)] où X est un vecteur aléatoire multidimensionnel que l'on ne sait pas simuler directement. Dans un contexte de copule à facteurs munie de marginales choisies, nous introduisons un algorithme par transformée de chaîne de Markov pour simuler sous la loi de X et approcher la quantité recherchée. Nous donnons des résultats de convergence théorique, puis une application à la gestion des risques extrêmes pour un vecteur de rendements d'​actifs. Ce travail a été effectué en collaboration avec Emmanuel Gobet et Rodrigo Targino.++ 
 + 
 +**jeudi 4 juin à 14h :** <color #088A85> Rafael Serrano </​color>​ (Universidad del Rosario, Colombia) //TBA. // 
 +++ Voir résumé |  \\  
 +++ 
 + 
 +**jeudi 7 mai à 14h :** <color #088A85> Marc Chataignier </​color>​ (UEVE, LaMME, Evry) //Deep local volatility. // 
 +++ Voir résumé |  \\  L'​apprentissage profond est apparu comme une nouvelle façon de calculer rapidement le prix d’options notamment à des fins de calibration et d’estimation des sensibilités. Cependant, la plupart de ces approches dans la littérature ne s’assurent pas de la non-arbitrabilité des prix estimés. 
 + 
 +Dans cet article, nous présentons une approche d'​apprentissage profond pour l'​interpolation sans arbitrage des prix des options vanilles européennes. En particulier,​ nous détaillons les changements apportés à la méthodologie standard pour imposer des contraintes de non-arbitrage et spécifions expérimentalement les paramètres requis pour conserver une précision adéquate. Un ajout notable est l'​utilisation de la formule Dupire pour encadrer la volatilité locale associée aux prix des options (non arbitrables),​ lors de l’entraînement du réseau. 
 +De cette façon, nous obtenons un réseau neuronal capable d'​interpoler conjointement le prix et la volatilité locale. 
 +++ 
 + 
 +**jeudi 23 avril à 14h :** <color #​088A85>​Adrien Barrasso ​ </​color>​ (CMAP, École Polytechnique)//​TBA. // 
 +++ Voir résumé |  \\ Nous commencerons par faire quelques rappels sur ce que sont les jeux à champ moyen (MFG) avec ou sans bruit commun, et les notions de solutions fortes, faibles, relâchées. Puis sur les Équations Différentielles Stochastiques Rétrogrades d'​ordre 2 (2BSDEs) qui apparaissent naturellement dans des problèmes de contrôle de volatilité et sont liées à des EDP (complètement) non-linéaires d'​ordre deux. Enfin nous présenterons un résultat d'​existence d'​équilibre pour un jeu à champ moyen avec bruit commun et contrôle de volatilité,​ ainsi qu'un théorème de représentation de cet équilibre par un 2BSDE de type McKean-Vlasov. 
 +++ 
 + 
 +**jeudi 9 avril à 15h :** <color #088A85> Yating LIU</​color> ​ (CEREMADE, Université Paris Dauphine - PSL) //​Functional convex order for the scaled McKean-Vlasov processes. // 
 +++ Voir résumé |  \\ We establish the functional convex order results for two scaled McKean-Vlasov processes X = (Xt)_t∈[0,​ T] and Y = (Yt)_t∈[0,​ T] defined by dX_t=(aX_t+b)dt+sigma(t,​ X_t, mu_t)dB_t and dY_t=(aY_t+b)dt+theta(t,​ Y_t, nu_t)dB_t: if we make the convexity and monotony assumption (only) on sigma and if sigma <= theta with respect to the partial matrix order, the convex order for the initial random variable X0 <= Y0 can be propagated to the whole path of process X and Y. That is, if we consider a convex functional F defined on the path space, we have EF(X)<= EF(Y); for a convex functional G defined on the product space involving the path space and its marginal distribution space, we have EG(X, (mu_t)_t∈[0,​ T]) <= EG(Y, (nu_t)_t∈[0,​ T]) under appropriate conditions. The dual case is also valid, that is, if theta <= sigma and Y0 <= X0 with respect to the convex order, then EF(Y) <= EF(X) and EG(Y, (nu_t)_t∈[0,​ T]) <= EG(X, (mu_t)_t∈[0,​ T]). The proof is based on several forward and backward dynamic programming and the convergence of the Euler scheme of the McKean-Vlasov equation. Joint work with Gilles Pagès. 
 +++ 
 + 
 +**jeudi 26 mars à 14h :** <color #088A85> Antonello Pesce </​color> ​ (Università di Bologna) //​Parametrix techniques for spds. // 
 +++ Voir résumé |  \\ We discuss the use of the parametrix method in the context of SPDEs in Holder spaces. We address the multi-dimensional parabolic case and a two-dimensional degenerate case showing existence, regularity, Gaussian type estimates of a stochastic fundamental solution, and applications to filtering theory. Our analysis is based on a Wentzell’s reduction of the SPDE to a PDE with random coefficients and point-wise controls for related stochastic flows of diffeomorphism. 
 +++ 
 + 
 +**jeudi 19 mars à 14h :** <color #088A85> Sarah Lemler </​color> ​ (Centrale Supélec) //TBA. // 
 +++ Voir résumé |  \\ We consider a 1-dimensional diffusion process X with jumps. The particularity of this model relies in the jumps which are driven by a multidimensional Hawkes process denoted N. We consider the Markovian case for which we were able to establish ergodicity results for process X. We will present in this talk the study of a nonparametric estimator of the drift coefficient of this original process. We have constructed an estimator based on discrete observations of the process X in a high frequency framework with a large horizon time and on the observations of the process N. We have obtained adaptive results that are comparable with the one obtained in the nonparametric regression context. We have finally conducted a simulation study in which we first focus on the implementation of the process and then on showing the good behavior of the estimator. 
 +++ 
 + 
 +**jeudi 12 mars à 13h30 :** <color #088A85> Matteo Basei </​color> ​ (EDF)//TBA. // 
 +++ Voir résumé |  \\ We consider a general class of nonzero-sum stochastic games with impulse controls. By means of a suitable system of quasi-variational inequalities,​ we provide a verification theorem for the equilibrium strategies. We then present some examples and applications. Finally, we consider some extensions and future research directions. 
 +++ 
 + 
 +**jeudi 12 mars à 14h15 :** <color #088A85> Thorsten Schmidt</​color> ​ (university of Friburg, Germany) ​ //TBA. // 
 +++ Voir résumé |  \\This work is an attempt to fundamentally study the valuation of insurance contracts. We start from the observation that insurance contracts are inherently linked to financial markets, be it by the link to interest rates, or -- as in hybrid products, equity-linked life insurance and variable annuities -- directly to stocks or indices. By defining trading strategies on an insurance portfolio and combining them with financial trading strategies we arrive at the notion of insurance-finance arbitrage (IFA). A fundamental theorem characterizes absence of IFA utilizing the law of large numbers and risk-neutral valuation. As a key result we obtain a simple valuation rule which excludes IFA. 
 + 
 +Utilizing ​ the theory of enlargements of filtrations we are able to construct a tractable framework for general valuation results. For practical applications,​ we provide an affine formulation of the driving quantities which leads to explicit valuation formulas for a large class of  hybrid products. 
 +++ 
 + 
 +**jeudi 13 février à 13h30 :** <color #088A85> Gilles Pagès ​ </​color>​ (Sorbonne Université,​ UPMC) //Schéma d'​Euler à pas décroissant d'une diffusion ergodique et algorithme de Langevin. // 
 +++ Voir résumé |  \\  Nous établissons des vitesses de convergence en variation totale et en distance de Wasserstein L^1 de la loi d'un schéma d'​Euler à pas décroissant d'une diffusion fortement ergodique vers sa loi invariante. Cela étend au cas d'un bruit multiplicatif divers résultats récents sur l'​algorithme "​Unajusted Langevin"​. ​ Nous utiliserons des estimées sous-gaussiennes de densité "à la Aronson"​ dans le cas d'un drift non bornée (à croissance linéaire). Travail joint avec F. Panloup. 
 +++ 
 + 
 + 
 +**jeudi 23 janvier à 14h00 :** <color #088A85> Noufel Frikha </​color>​ (Université Paris 7) //​Well-posedness of McKean-Vlasov SDEs, related PDE on the Wasserstein space and some new quantitative estimates for propagation of chaos. // 
 +++ Voir résumé |  \\  In this talk, I will present some recent results on the well-posedness in the weak and strong sense of some non-linear stochastic differential equations (in the sense of McKean-Vlasov) driven by Brownian and/or jump processes which go beyond those derived from the standard Cauchy-Lipschitz theory (see e.g. the monograph of Sznitman). Then, in the Brownian setting, I will show how the underlying noise regularizes the equation and allows to prove that the transition density of the dynamics exists and is smooth, especially in the measure direction, under the uniform ellipticity assumption. Such smoothing effects then in turn allow to establish the existence and uniqueness for the Cauchy problem associated to the Kolmogorov PDE stated on the Wasserstein space with irregular terminal condition and source term. This PDE on an infinite dimensional space plays a key role in order to derive new quantitative estimates of propagation of chaos for the mean-field approximation by systems of interacting particles. 
 + 
 + This presentation is based on several recent works in collaboration with: P.-E. Chaudru de Raynal (Université Savoie Mont Blanc), V. Konakov (HSE Moscou), L. Li (UNSW Sydney) and S. Menozzi (Université d'Evry Val d'​Essone). 
 +++
  
 **__Exposés de l'​année 2019__ :** **__Exposés de l'​année 2019__ :**
 +
 +**jeudi 19 décembre à 15h00 :** <color #088A85> Miryana Grigorova</​color>​ (University of Leeds) //A non-linear incomplete market model with default: Pricing of European and American options//
 +++ Voir résumé |  \\ We present an incomplete market model with default which consists of one risky asset with dynamics driven by two "​sources of risk", namely a Brownian motion and a compensated default martingale. Additionally to this feature, the wealth process follows non-linear dynamics with a non-linear driver f, which allows to incorporate a number of imperfections in the market.
 +We thus face a non-linear incomplete market with default. ​ We provide a dual formulation of the seller'​s superhedging price for a European option in terms of the supremum, over a suitable set of equivalent probability measures Q, of the non-linear f-evaluation/​expectation under Q of the payoff. ​ We also provide some related criteria for replicability of a given pay-off. ​ By a form of symmetry, we derive corresponding results for the buyer. ​ Our results rely on first establishing a non-linear optional decomposition for processes which are (non-linear) f-strong supermartingales under Q, for all Q.  This decomposition is the analogue in our framework of the well-known optional decomposition from the linear case.  We also show that the non-linear optional decomposition is equivalent to a non-linear predictable decomposition with constraints.
 +This result allows us to show an infinitesimal characterization of the seller'​s (superhedging) price process as the minimal supersolution of a constrained BSDE with default.
 +We will also discuss corresponding results for the seller'​s superhedging price of an American option.
 +
 +The talk is based on joint works with Marie-Claire Quenez and Agnès Sulem.
 +++
 +
 +**28 novembre à 14h00 :** <color #088A85> Marie-Amélie Morlais </​color>​(Université du Mans)  // Problème de commutation optimale avec nombre infini de modes : Une approche par “randomisation” et caractérisation par une EDSR avec contraintes sur les sauts//
 +++ Voir résumé |  \\Dans une première partie de l'​exposé,​ on introduit:
 +
 +- d'une part, le problème de contrôle stochastique primal (qui n'est autre que le problème de commutation optimale avec nombre infini de modes)
 +-  d'​autre part, le problème de contrôle dit dual: ce dernier nécessite une construction du cadre dit "​randomisé"​ qui spécifie ​ en quoi consiste l'​ensemble des contrôles admissible dans ce nouvel espace probabilisé abstrait.
 +Les données du problème peuvent être à dépendance trajectorielle (en particulier,​ ceci est le cas des coefficients b et sigma définissant l’EDS associée à un processus exogène X. Les deux processus b et sigma sont contrôlés.)
 +Une différence majeure provient aussi du fait que l'​ensemble des modes est un espace de Borel infini éventuellement non dénombrable.
 +On présente les résultats majeurs du papier :
 +(i) l'​égalité des fonctions valeurs (associées aux problèmes primaux et duaux introduits) ;
 +(ii) la caractérisation de la fonction valeur commune comme la solution (minimale) d’une EDSR avec contraintes sur le terme de sauts.
 +Si le temps le permet, quelques idées de preuve seront données (pour le premier résultat (i)). La caractérisation à l'aide d'une Backward (avec contraintes) de la fonction valeur duale résultant d’outils relativement classiques.
 +Pour conclure, quelques perspectives d'​étude future seront présentées.
 +(Travail en commun avec Marco Fuhrman, Universita degli Studi Di Milano, Milan Italie).
 +++
 +
 +**7 novembre à 14h00 :** <color #088A85> Lokmane Abbas Turki</​color>​(Sorbonne Universités - Paris 6)  //  Conditionnal Monte Carlo Learning for diffusions//​
 +++ Voir résumé |  \\We present a new algorithm based on One-Layered Nested Monte Carlo (1NMC) to simulate functionals $U$ of a Markov process $X$. The main originality of the proposed method comes from the fact that it provides a recipe to simulate $U_{t\geq s}$ conditionally on $X_{s}$. This recipe can be used for a large number of situations including: Backward Stochastic Differential Equations (BSDEs), Reflected BSDEs (RBSDEs), risk measures and beyond. In contrast to previous works, our contribution is based on a judicious combination between regression and 1NMC used for localization purpose. The generality, the stability and the iterative nature of this algorithm, even in high dimension, make its strength. It is of course heavier than a straight Monte Carlo (MC), however it is far more accurate to simulate quantities that are almost impossible to simulate with MC. Indeed, using the double layer of trajectories,​ we explain how to estimate and control the bias propagation. With this double layer structure, it is also possible to adjust the variance for a better description of tail events. Moreover, the parallel suitability of 1NMC makes it feasible in a reasonable computing time. This presentation explains this algorithm and details error estimates. We also provide various numerical examples with a dimension equal to 100 that are executed in few minutes on one Graphics Processing Unit (GPU).
 +++
 +
 +**17 octobre à 14h00 :** <color #088A85> Alexandre Veretennikov</​color> ​ (University of Leeds) ​ //  On McKean-Vlasov stochastic equations//
 +++ Voir résumé |  \\Weak existence will be shown for a class of McKean-Vlasov equations. Specifically results will be presented on: (a) existence for bounded Borel coefficients with non-degenerate diffusion (the class of coefficients is a bit wider than the standard linear coefficient dependence of the measure); (b) existence for unbounded Borel coefficients under linear growth given that for bounded ones existence is known; (c) existence for non-symmetric (& still non-degenerate) diffusions. In addition some results on strong existence and on weak and strong uniqueness will be stated.
 +++
 +
 +**2 octobre à 14h00 :** <color #088A85> Sergio Pulido Nino </​color> ​ (ENSIIE/​LaMME) ​ //  Stochastic Volterra equations//
 +++ Voir résumé |  \\We obtain general weak existence and stability results for Stochastic Convolution Equations (SVEs) with jumps under mild regularity assumptions,​ allowing for non-Lipschitz coefficients and singular kernels. The motivation to study SVEs comes from the literature on rough volatility models. Our approach relies on weak convergence in Lp spaces. The main tools are new a priori estimates on Sobolev-Slobodeckij norms of the solution, as well as a novel martingale problem that is equivalent to the original equation. This leads to generic approximation and stability theorems in the spirit of classical martingale problem theory. To illustrate the applicability of our results, we consider scaling limits of nonlinear Hawkes processes and approximations of stochastic Volterra processes by Markovian semimartingales.
 +++
 +
 +**26 septembre à 14h00 :** <color #088A85> Andrew Soane </​color> ​ (University of Cape Town)  //  Optimal stopping with an enlarged filtration with an application to the Brownian Bridge//
 +++ Voir résumé |  \\This talk will give an overview of the enlargement of filtration, focusing on the tools developed for its application,​ as well as a brief overview of optimal stopping problems from a Martingale perspective. We will then prove a relationship between the Snell envelope in the enlarged filtration and a parameterised Snell envelope in the reference filtration. Using this relationship we will then derive the optimal stopping value of a Brownian bridge, confirmed by results in the literature.
 +++
 +
 +**16 mai à 14h00 :** <color #088A85> Aurélien ​ Alfonsi </​color> ​ (  Ecole des Ponts ParisTech) ​ //   ​Approximation of OT problems with marginal moments contraints (Joint work with Rafaëll Coyaud, Virginie Ehrlacher and Damiano Lombardi)//
 +++ Voir résumé |  \\Optimal Transport (OT) problems arise in a wide range of applications,​ from physics to economics. Getting numerical approximate solution of these problems is a challenging issue of practical importance. In this work, we investigate the relaxation of the OT problem when the marginal constraints are replaced by some moment constraints. Using Tchakaloff'​s theorem, we show that the Moment Constrained Optimal Transport problem (MCOT) is achieved by a finite discrete measure. Interestingly,​ for multimarginal OT problems, the number of points weighted by this measure scales linearly with the number of marginal laws, which is encouraging to bypass the curse of dimension. This approximation method is also relevant for Martingale OT problems. We show the convergence of the MCOT problem toward the corresponding OT problem. In some fundamental cases, we obtain rates of convergence in $O(1/n)$ or $O(1/n^2)$ where $n$ is the number of moments, which illustrates the role of the moment functions. Last, we present algorithms exploiting that the MCOT is reached by a finite discrete measure and provide numerical examples of approximations..
 +++
 +
 +**18 avril à 14h00 :** <color #088A85> Roxana Dumitrescu </​color> ​ (King'​s College London) ​ //  Mean-field games of optimal stopping: a relaxed solution approach//
 +++ Voir résumé |  \\We consider the mean-field game where each agent determines the optimal time to exit the game by solving anoptimal stopping problem with reward function depending on the density of the state processes of agents still present in thegame. We place ourselves in the framework of relaxed optimal stopping, which amounts to looking for the optimal occupationmeasure of the stopper rather than the optimal stopping time. This framework allows us to prove the existence of the relaxedNash equilibrium and the uniqueness of the associated value of the representative agent under mild assumptions. Further, weprove a rigorous relation between relaxed Nash equilibria and the notion of mixed solutions introduced in earlier works on thesubject, and provide a criterion, under which the optimal strategies are pure strategies, that is, behave in a similar way tostopping times. Finally, we present a numerical method for computing the equilibrium in the case of potential games and showits convergence (joint work with  Peter Tankov and G. Bouveret).
 +++
  
 **11 avril à 14h00 :** <color #088A85> Caroline Hillairet </​color> ​ (ENSAE) //  Aggregation of  heterogeneous ​ consistent progressive utilities// **11 avril à 14h00 :** <color #088A85> Caroline Hillairet </​color> ​ (ENSAE) //  Aggregation of  heterogeneous ​ consistent progressive utilities//
evenements/seminaireproba-math-fi.1554746585.txt.gz · Last modified: 2019/04/08 20:03 by Valérie Picot

Page Tools