- Équipes
- Productions scientifiques
-
- Séminaires
Anne-Sophie de Suzzoni (Ecole Polytechnique)
Trivial resonances for a system of Klein-Gordon equations and statistical applications.
In the derivation of the wave kinetic equation coming from the Schrödinger equation, a key feature is the invariance of the Schrödinger equation under the action of U(1). This allows quasi-resonances of the equation to drive the effective dynamics of the statistical evolution of solutions to the Schrödinger equation. In this talk, I will give an example of an equation that does not have the same invariance as the Schrödinger equation, and I will show that in this example, exact resonances (always) take precedence over quasi-resonances, so that the effective dynamics of the statistical evolution of the solutions are not kinetic. However, these dynamics are not linear (let alone trivial). I will present the problem and the ideas involved in deriving the effective dynamics and some elements of proof: in particular, I will describe the representation of solutions of the initial equation in diagrammatic form. This talk is based on a work in progress with Annalaura Stingo (X) and Arthur Touati (CNRS/Bordeaux).